
Secret-Ballot Electronic Voting Procedures Over the Internet

Michael James Korman

B.S.E., University of Connecticut, 2004

A Thesis
Submitted in Partial Fulfillment of the

Requirements for the Degree of
Master of Science

at the
University of Connecticut

2007

ii

Copyright

Michael James Korman

2007

Verbatim copying and distribution of this entire document are permitted
worldwide, without royalty, in any medium, provided this notice, and the

copyright notice, are preserved.

iii

APPROVAL PAGE

Master of Science Thesis

Secret-Ballot Electronic Voting Procedures Over the Internet

Presented by

Michael James Korman, B.S.E.

Major Advisor

Aggelos Kiayias

Associate Advisor
Alexander Russell

Associate Advisor
Zhijie Shi

University of Connecticut
2007

Acknowledgements

I would like to thank the following people: my advisor, Aggelos Kiayias, for his
guidance and support; David Walluck, for his work on the Adder system; Alex
Russell and Jerry Shi, for serving on my thesis committee; Hong-Sheng Zhou,
for his suggestions and corrections; and Stephanie, for her endless encourage-
ment.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Classical Technology . 2
1.3 Failures of Electronic Voting . 2
1.4 The Need for Strong Cryptography 3
1.5 Outline . 4
1.6 Prerequisites . 5

2 Mathematical Preliminaries 6
2.1 Basic Definitions . 6
2.2 Computational Complexity . 7
2.3 Probability . 9
2.4 Algebra . 10
2.5 Number Theory . 15
2.6 Complexities of Arithmetic Operations 16

3 Cryptographic Preliminaries 18
3.1 Adversarial Advantage . 18
3.2 The Discrete Logarithm . 19

3.2.1 Algebraic Setting . 19
3.2.2 The Diffie-Hellman Problems 20

3.3 The Composite Residuosity Problem 23
3.4 Encryption . 26

3.4.1 Formal Definition . 26
3.4.2 Security Definitions . 27

3.5 Conclusion . 31

4 Homomorphic Encryption Schemes 32
4.1 Introduction . 32
4.2 The Elgamal Cryptosystem . 33

v

CONTENTS vi

4.3 The Paillier Cryptosystem . 35
4.4 The Damgård-Jurik Cryptosystem 37
4.5 Conclusion . 40

5 Proofs of Knowledge 41
5.1 Motivation . 41
5.2 Required Properties . 42
5.3 Interactive Proof Systems . 42
5.4 Formal Definition . 43
5.5 Basic Protocols . 45

5.5.1 Knowledge of Discrete Logs 45
5.5.2 Equality of Discrete Logs . 45

5.6 Composition of Proofs . 46
5.7 Non-interactive Proofs . 48
5.8 The Random Oracle Model . 49
5.9 Proofs About Encryptions . 49

5.9.1 Elgamal Proofs . 50
5.9.2 Paillier Proofs . 50
5.9.3 Damgård-Jurik Proofs . 52

5.10 Conclusion . 53

6 Distribution of Trust 55
6.1 Motivation . 55
6.2 Shamir’s Scheme . 56
6.3 The Communication Model . 57
6.4 Verifiable Secret Sharing . 58

6.4.1 The Model . 58
6.4.2 Feldman’s VSS . 59

6.5 Distributed Key Generation . 60
6.5.1 Pedersen’s DKG Protocol . 61
6.5.2 Public DKG . 61

6.6 Threshold Homomorphic Cryptosystems 64
6.6.1 Threshold Elgamal . 65
6.6.2 Threshold Paillier . 67
6.6.3 Threshold Damgård-Jurik 70

6.7 Conclusion . 71

7 The Election Procedure 73
7.1 The Players . 73
7.2 Ballot Encoding . 74

CONTENTS vii

7.2.1 Yes/No Elections . 74
7.2.2 Multi-way Elections . 75
7.2.3 Limited Vote . 76

7.3 Ballot Casting . 76
7.4 A Complete Procedure . 79
7.5 Arguments for Security and Correctness 82

7.5.1 Correctness . 82
7.5.2 Security . 82

7.6 Conclusion . 84

8 Other Approaches to Voting 85
8.1 Mixnets . 85
8.2 Blind Signatures . 85
8.3 Other Methods . 86

9 Implementation of the Adder Voting System 88
9.1 Introduction . 88
9.2 System Architecture . 89
9.3 Outline of an Adder Procedure . 90
9.4 Limitations of Adder . 90
9.5 Conclusion . 92

10 Conclusion 93
10.1 Further Directions . 93

10.1.1 Formalization of Security . 93
10.1.2 Non-voting Applications . 93
10.1.3 Implementations . 94
10.1.4 Experimental Data . 94
10.1.5 More Sophisticated Voting Methods 94

10.2 Discussion . 95

Bibliography 96

Index 102

List of Figures

3.1 Diffie-Hellman Key Exchange . 21
3.2 Diagram of encryption. Alice wants to send a message m to Bob,

and encrypt it as a ciphertext c. 27
3.3 The IND-CPA game . 28
3.4 The ROR-CPA game . 29
3.5 The IND-CCA2 game . 30

4.1 The Elgamal cryptosystem . 34
4.2 The additively homomorphic Elgamal cryptosystem 35
4.3 The Paillier cryptosystem . 36
4.4 The Damgård-Jurik cryptosystem 37

5.1 General form of three-move zero-knowledge protocols 43
5.2 The Schnorr proof of knowledge of discrete logs. 45
5.3 The Chaum-Pedersen proof of equality of discrete logs 46
5.4 Proof of the disjunction of two predicates 47
5.5 Proof that an Elgamal ciphertext encrypts 0 or 1 50
5.6 Proof that a Paillier ciphertext encrypts 0 51
5.7 Proof that a Paillier ciphertext encrypts 0 or 1 52
5.8 The modified Damgård-Jurik cryptosystem 53
5.9 Proof that a Damgård-Jurik ciphertext is well-formed. Here, we

assume 2k2 is less than the smallest prime factor of n. 54
5.10 Proof that a Damgård-Jurik ciphertext encrypts m 54

6.1 The bulletin board model of communication. User 1 wishes to
send a message m to user n. Note that user i can also read the
message. 58

6.2 Feldman’s Verifiable Secret Sharing 60
6.3 Pedersen’s Distributed Key Generation 62
6.4 Fouque-Stern Distributed Key Generation 63

viii

LIST OF FIGURES ix

6.5 The IND-DCPA game . 65
6.6 Threshold Elgamal Procedure . 66
6.7 Threshold Paillier procedure . 68
6.8 Threshold Damgård-Jurik procedure 72

7.1 Possible separation of duties. 74

9.1 The stages of an Adder election procedure 91

List of Tables

2.1 Time complexities of arithmetic operations in Zn 17

4.1 Comparison of Cryptosystems . 40

x

Chapter 1

Introduction

Electronic voting is one of the most controversial subjects in information technol-
ogy. Debates on the topic cross all areas of discourse: politics, usability, public
policy, computer and physical security, cryptography, and mathematics. Before
embarking on our study of how cryptography can be used to address this problem,
it is necessary to review the nature of the problem itself. We pose the question:
what is wrong with current voting technology?

1.1 Motivation

Voting is the central element of a democracy. Elections give the citizens of a
country the ability to voice their opinions, choose representatives, and ensure
that the government remains in the hands of the people.

Political elections are not the only place for voting. Smaller-scale elections
are even more common. For example, many organizations hold elections to se-
lect officials, boards of directors, etc. If one was to evaluate the global need for
correct and worthwhile voting systems, smaller organizations would probably
rank higher than governments.

However, just because a government or organization allows voting does not
make it a democracy. Voting can be useless if the election outcome does not
accurately represent the combined desires of the voters. What properties must a
voting scheme possess to be considered “useful?” At the very least, it must allow
each voter to have his opinion counted in the election outcome. Ideally, the
election outcome should represent the solution most favorable to the majority.
How this is defined is a matter of debate, and several mathematical results have
been posed that attempt to rigorously define this concept.

Furthermore, the voting scheme must be in some sense robust. That is,

1

1.2 Classical Technology 2

individual participants should not be able to corrupt or compromise the elec-
tion. Malicious behavior can take many forms, including inaccurately influenc-
ing the election outcome, disenfranchising voters, compromising voter privacy,
and disrupting the entire election procedure.

1.2 Classical Technology

Current non-electronic voting technology comes in many forms. One of the
simplest forms of voting is the paper ballot. With this method, each voter is
given a ballot, printed on paper, and is asked to mark his choices. The ballots
are then collected, shuffled, and counted by hand. Ballots can be submitted by
mail, or filled out at a polling place. Another common method of voting is with
a mechanical lever-based machine. Voters arrive at the polling place, and enter
a private booth containing a machine. Corresponding to each candidate is a
lever. Voters pull the lever of their choice, and a mechanical counter is updated
to reflect the newly cast ballot.

Non-electronic voting methods, in some form or another, have existed for
centuries. As such, they are well understood, and widely trusted. Paper-based
methods, in particular, are easily comprehensible by the general public. An-
other advantage of paper-based methods is the fact that they are auditable.
That is, it is a simple matter to count the paper ballots by hand. Furthermore,
assuming that no ballots are lost, a recount is also easy to perform.

The public first became widely suspicious of paper-based voting after the
2000 United States Presidential election. In Florida, the difference between
the two primary candidates was so close that the state mandated a recount.
The count was deemed valid, but numerous concerns were raised following
the election. Regarding the voting technology, the so-called “butterfly ballots”
used in Palm Beach County were seen as overly confusing, and may have led to
many miscast votes. Additionally, some punch-card ballots were not punched
properly, and thus read incorrectly by the counting machine. Following this
election, there was a strong push towards electronic voting systems which were
easier to use, and supposedly less prone to error.

1.3 Failures of Electronic Voting

Most electronic voting systems used in practice are known as direct recording
electronic (DRE) systems. That is, they are digital devices that contain internal
counters representing the running total of votes. A voter fills out a ballot by
either using a touch-screen interface, or completes a card by filling in ovals

1.4 The Need for Strong Cryptography 3

with a pencil. The voting machine accepts the ballot and adds the vote to the
internal counter.

The Diebold AccuVote-TS touch-screen DRE system is one of the most heav-
ily criticized [KSRW04] non-Internet-based electronic voting systems used in
practice. Problems pointed out include incorrect use of cryptography, poor
code quality, and possibility of smartcard forgery, among many others. Despite
Diebold’s rebuttal [Sys03], the system is mistrusted by a number of experts.
Diebold also manufactures an optical scan system, the AccuVote-OS, which it-
self has been subject to numerous attacks [Hur05], [KMR+06].

In 2004, the United States Department of Defense canceled the Secure
Electronic Registration and Voting Experiment project (known as SERVE), an
Internet-based PC voting system. This project, a $22 million contract, was
hoped to be used to count votes in the 2004 general elections. However, nu-
merous technological flaws were revealed by Rubin, et al. [JRSW04]. The
stated flaws include: use of closed, proprietary software, and thus vulnera-
bilities to insider attacks; lack of a verifiable audit trail; use of the Internet,
opening the door to numerous security problems such as denial-of-service at-
tacks, spoofing, viruses, etc. The report concluded that there are no acceptable
alternatives to SERVE; all suffer from the same fundamental vulnerabilities.

As a result of these failures, the public has become increasingly wary of
electronic voting systems. Indeed, their fears are not without merit, as secure
electronic voting may never be possible over a network such as the Internet.
Security experts often view voting as the “holy grail” of security. Noted security
professional Bruce Schneier has said, “a secure Internet voting system is theo-
retically possible, but it would be the first secure networked application ever
created in the history of computers.” [Sch00]

1.4 The Need for Strong Cryptography

If secure voting is ever to succeed on the Internet or any other insecure net-
work, it will only happen through the use of cryptography. Strong crypto-
graphic mechanisms can provide solutions to many of the inherent problems
in existing electronic voting systems, such as integrity and privacy.

Cryptography cannot possibly solve all problems associated with voting.
Some of these problems are fundamental to the nature of computer networks.
Cryptography cannot make up for network deficiencies, and such as susceptibil-
ity to denial-of-service attacks. Furthermore, there are several social problems
that are completely unrelated to the specific technology used. For example, the
problem of vote buying and coercion will exist with any system where voters

1.5 Outline 4

either vote unsupervised, or are permitted to vote on their own machines.
What problems can cryptography solve? While designing a cryptographic

scheme for voting, we consider the following design goals.

1. Transparency. All of the data on any networked servers should be acces-
sible to the public. This includes the encrypted votes, public encryption
keys, and final tallies. Public servers should not store secrets.

2. Universal Verifiability. Any election result obtained by the system should
be verifiable by any third party. By inspecting the election transcript, it
should be possible to perform a complete audit of any procedure.

3. Privacy. All voters in an election should be confident that their individual
choices will remain hidden. Only the outcome is made available to the
public.

4. Distributed Trust. Each procedure is supervised by multiple trustees, and
the final sum cannot be revealed without the cooperation of a given num-
ber of trustees. Any attempt to undermine the procedure will require the
corruption of a large number of trustees. Trustees and voters may over-
lap arbitrarily. Thus, it is possible for the voters themselves to ensure
trustworthiness, or have an active role in it.

In this thesis, we will investigate how cryptography can be used to achieve
all of these goals.

1.5 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we will
provide a concise review of the mathematics background necessary to under-
stand the cryptography we use. In Chapter 3, we explain the fundamentals of
cryptography, focusing on the aspects needed for electronic voting. Chapter 4
gives an analysis of several encryption schemes that are particularly well-suited
to voting. In Chapter 5, we introduce proofs of knowledge, a powerful tech-
nique for proving knowledge of information without revealing it. In Chapter 6,
we describe techniques for distribution of trust, a necessary component of any
system to be deployed over the Internet. In Chapter 7, we describe how all of
these techniques can be combined to build robust voting systems. In Chapter 8,
we give examples of related work in electronic voting. In Chapter 9, we present
an implementation of the ideas given in this thesis. Finally, in Chapter 10, we
give a brief summary and discussion, as well as suggestions for future work in
the area.

1.6 Prerequisites 5

1.6 Prerequisites

The reader is assumed to have a basic working knowledge of computer sci-
ence and mathematics, such as that obtained by an undergraduate degree in
either field. However, no specific background knowledge beyond high school
mathematics, rudimentary algorithms, and proof techniques is required. In
particular, no knowledge of cryptography, complexity theory, or abstract alge-
bra is assumed. Where there is uncertainty, definitions are provided for the
reader’s convenience. However, our presentation of the basic fundamentals is
given in a rather terse manner. The inexperienced reader will find it helpful to
supplement this manuscript with additional references, which will be given as
needed.

Chapter 2

Mathematical Preliminaries

In this chapter, we introduce the basic mathematics needed to understand cryptog-
raphy. We focus only on the definitions and results necessary for the development
of this thesis.

2.1 Basic Definitions

We use the symbols N,R,Q and Z to refer to the sets of naturals ({1, 2,3, . . .}),
reals, rationals, and integers, respectively. If a, n ∈ Z, then a mod n is equal to
the remainder of a÷ n. The symbol Zn refers to the “integers modulo n,” that
is,

Zn
def
= {x | 0≤ x ≤ n− 1}.

For n ∈ N, the notation [n] refers to the set {1, . . . , n}.

Definition 2.1.1. Let X and Y be sets, and let f : X −→ Y be a function map-
ping X into Y . We say f is injective if f (x) = f (y) implies that x = y . We say
f is surjective if for all y ∈ Y , there exists an x ∈ X such that f (x) = y . We say
f is bijective if f is both injective and surjective.

Definition 2.1.2. A number p ∈ N \ {1} is called prime if its only factors are 1
and itself. We say p is an odd prime if p is prime and p 6= 2.

Definition 2.1.3. The greatest common divisor of a, b ∈ Z is the largest integer
g such that g | a and g | b. In this case, we write g = gcd(a, b). Integers a and
b are called relatively prime if gcd(a, b) = 1, and we write a ⊥ b.

Definition 2.1.4. The least common multiple of a, b ∈ Z is the least integer m
such that m= ax = b y , for some x , y ∈ Z. In this case, we write m= lcm(a, b).

6

2.2 Computational Complexity 7

Definition 2.1.5. Let x ∈ Z. Then, the length of x , denoted len x , is the length

of the binary representation of x . That is, len x
def
= blg xc+ 1.

2.2 Computational Complexity

As we will eventually be discussing the nature of the computational resources
required by various protocols and algorithms, it is necessary to review a basic
framework for measuring computational complexity.

Definition 2.2.1 (Asymptotic Notation). Let f : N −→ R and g : N −→ R be
functions. We define the following sets.

1. We say f ∈ O(g) (“big omicron”) if there exists an N ≥ 0 such that for all
n≥ N , f (n)≤ cg(n), for some c ∈ R+.

2. We say f ∈ Ω(g) (“big omega”) if there exists an N ≥ 0 such that for all
n≥ N , f (n)≥ cg(n), for some c ∈ R+.

3. We say f ∈ Θ(g) (“big theta”) if there exists an N ≥ 0 such that for all
n≥ N , c1 f (n)≤ f (n)≤ cg(n), for some c1, c2 ∈ R+.

4. We say f ∈ o(g) (“little omicron”) if

lim
n→∞

f (n)
g(n)

= 0.

Throughout this thesis, algorithms are assumed to be modeled by Tur-
ing machines, either deterministic or probabilistic. The reader is referred to
[Sip97] for a precise definition of Turing machine.

Definition 2.2.2. A probabilistic Turing machine is a Turing machine with access
to an additional random tape. The random tape contains an infinite sequence
of 0s and 1s, and is provided to the Turing machine as input. A probabilistic
Turing machine that is restricted to operating in polynomial time in its input is
called a probabilistic polynomial time Turing machine, abbreviated PPT.

Definition 2.2.3. Let L be a language, and let O be a Turing machine deciding
L. Then, we say that O is an oracle for L. If M is a Turing machine, we use
the notationM O to refer to the Turing machineM with the added capability
of querying the oracle O on inputs of its choosing.

2.2 Computational Complexity 8

Definition 2.2.4. Define f : N −→ N. Then, TIME(f) is the set of all problems
that can be solved in time O(f). Furthermore,

P
def
=
∞
⋃

k=1

TIME(nk).

The class P is the set of all problems that can be solved in polynomial time.
This class corresponds quite naturally to the set of problems that are “tractable.”

Definition 2.2.5. Define f : N −→ N. Then, NTIME(f) is the set of all prob-
lems that can be solved in time O(f) by a non-deterministic Turing machine.
Furthermore,

NP
def
=
∞
⋃

k=1

NTIME(nk).

The class NP is the set of all problems that can be solved in non-deterministic
polynomial time. Since a non-deterministic Turing machine is capable of per-
forming numerous simultaneous deterministic computations, and is only charged
for the one that actually finds the answer, we can also think about NP as the
set of problems that have solutions that are verifiable in polynomial time. It is
thus obvious that P ⊆ NP, as computing a solution is certainly no easier than
verifying one. One of the greatest unsolved problems in complexity theory is
whether or not P equals NP. The current popular opinion is that these two class
differ, with P being a strict subset of NP.

Definition 2.2.6. Let L1 and L2 be languages over some alphabet Σ. Then, we
say that L1 is polynomial-time reducible to L2 if there exists a polynomial time
computable function f : Σ∗ −→ Σ∗ such that w ∈ L1 if and only if f (w) ∈ L2,
and we write L1 ≤P L2. If L1 ≤P L2 and L2 ≤P L1, then we say L1 and L2 are
polynomial-time equivalent, and write L1 =P L2.

Now, suppose P1 and P2 are function problems. We say that P1 is polynomial
time reducible to P2 if there exist two polynomial time computable functions
f1, f2 : Σ∗ −→ Σ∗ such that if x is an instance of P1, then f1(x) is an instance of
P2, and if y is a correct output of f1(x), then f2(y) is a correct output of x .

Definition 2.2.7. Let L be a language. We say L is NP-hard if M ≤P L, for all
M ∈ NP. We say L is NP-complete if L is NP-hard and L ∈ NP.

Theorem 2.2.8. If L is NP-complete, and L ∈ P, then P= NP.

Theorem 2.2.8 says that the NP-complete problems are somehow the “hard-
est” problems in NP. Thus, if one of them is shown to be in P, all of NP must be
in P.

2.3 Probability 9

2.3 Probability

We give here an axiomatic viewpoint of probability.

Definition 2.3.1. Let Ω be a set, and let F be a collection of subsets of Ω. We
call (Ω,F) a σ-field if the following hold.

1. ; ∈ F .

2. If E ∈ F , then Ω \ E ∈ F .

3. If E1, E2, . . . is a countable collection of subsets of F , then E1 ∪ E2 ∪ · · · ∈
F .

Definition 2.3.2. Let (Ω,F) be a σ-field. A function Pr: F −→ R+ is called a
probability measure if the following conditions hold.

1. For all E ∈ F , it holds that 0≤ Pr[E]≤ 1.

2. Pr[Ω] = 1.

3. If E1, E2, . . . ∈ F are disjoint, then Pr[
⋃∞

i=1 Ei] =
∑∞

i=1 Pr[Ei].

Definition 2.3.3. Given a σ-field (Ω,F) and a probability measure Pr defined
on F , we call (Ω,F , Pr) a probability space. We refer to Ω as a sample space,
and the elements of F as events.

Let (Ω,F , Pr) be a probability space, with Ω a finite set, andF the set of all
subsets of Ω. Suppose Q is a predicate over Ω. Let AQ = {ω ∈ Ω : Q(ω)} ∈ F .
Then,

Pr[AQ]
def
=
∑

ω∈AQ

Pr[{ω}].

If Pr[{ω}] = 1/|Ω|, for all ω ∈ Ω, then we say that (Ω,F , Pr) is a uniform
distribution.

If S is an arbitrary set,
Pr

x←S
[Q(x)]

denotes the probability Pr[Q(x)] in the uniform distribution (S,P (S), Pr).
Finally, we often use an algorithmic instruction dealing with randomness.

Let S be a set. We use the notation x ∈U S to mean that x is an element chosen
uniformly at random from S.

2.4 Algebra 10

2.4 Algebra

We now review some basic facts about modern algebra. As algebra deals with
the study of binary operations over sets, we must first define what we mean by
“binary operation.”

Definition 2.4.1. Let S be a set. A binary operation over S is a function ?: S ×
S −→ S. If a, b ∈ S, we write ‘a ? b’ for ‘?(a, b)’.

Groups are the fundamental algebraic structure that we shall concern our-
selves with.

Definition 2.4.2. A group is a pair (G, ?), where G is a set and ? is a binary
operation over G, such that the following axioms hold.

1. For all x , y, z ∈ G, it holds that (x ? y) ? z = x ? (y ? z) (associativity).

2. There exists an e ∈ G such that x ? e = e ? x = x , for all x ∈ G (identity).

3. For all x ∈ G, there exists a y ∈ G (often denoted x−1) such that x ? y =
x ? y = e (inverse).

Example 2.4.3. Examples of groups include (Z,+), (R \ {0}, ·), (Q,+). An ex-
ample of a non-group is (N,+) (not every element has an inverse). ◊

Instead of writing out the ? operation explicitly, we usually denote the
group operation by juxtaposition (a ? b is written as ab), and refer to the op-
eration as “multiplication.” Predictably, we use the notation g x to refer to the
successive multiplication of g by itself x times.

Definition 2.4.4. Let (G1,?) and (G2,◦) be groups. A map ϕ : G1 −→ G2 is
called a homomorphism if ϕ(g ? h) = ϕ(g) ◦ϕ(h), for all g, h ∈ G1. A bijective
homomorphism is called an isomorphism. If ϕ : G1 −→ G2 is an isomorphism,
we say that G1 and G2 are isomorphic and we write G1

∼= G2.

Homomorphism and isomorphism are two notions of equality for groups.
Two groups are homomorphic if they have the same algebraic structure, even if
the elements themselves are not the same. Two groups are isomorphic if they
are identical, up to a renaming of the elements.

Definition 2.4.5. Let G be a group under a binary operation ?, and let H ⊆ G.
We say H is a subgroup of G, and write H ≤ G, if H is also a group under ?.

2.4 Algebra 11

It is important to notice that there is a distinction between subgroups and
subsets. An arbitrary subset of a group may not itself be a group. Furthermore,
even if a subset of a group is itself a group, it must be a group under the same
operation in order to be considered a subgroup.

Definition 2.4.6. A group G is called abelian if x y = y x , for all x , y ∈ G (that
is, the operation is commutative). In this case, we often write the operation as
addition instead of multiplication.

Example 2.4.7. An example of an abelian group is (Z,+). An example of a
non-abelian group is (M2(R), ·), the group of 2× 2 real matrices under matrix
multiplication. ◊

Definition 2.4.8. Let G be a group, and let H ≤ G. Then, for any g ∈ G, the
set

g +H
def
= {x + h | h ∈ H}

is called the coset of H containing g.

Let us define an operation on cosets as follows. If a+H and b+H are two
cosets of H, define (a + H) + (b + H) to be the coset (a + b) + H. It is easily
shown that this operation defines a group, with H as the identity. We call this
the quotient group of G with respect to H, and write it as G/H.

Suppose (G1,+1), . . . , (Gn,+n) are groups. Consider the Cartesian product
of G1, . . . , Gn as sets:

G1× · · · × Gn
def
= {(g1, . . . , gn) | g1 ∈ G1, . . . , gn ∈ Gn}.

For any tuples (g1, . . . , gn) and (h1, . . . , hn), define an operation + such that

(g1, . . . , gn) + (h1, . . . , hn)
def
= (g1+1 h1, . . . , gn+n hn).

Again, this easily defines a group, called the direct product of G1, . . . , Gn.

Definition 2.4.9. A group G is called cyclic if there exists a g ∈ G, such that for
all h ∈ G, there exists an x ∈ Z such that g x = h. In this case, g is called the
generator of G, and we write G = 〈g〉.

In the study of cryptography, nearly all groups that we encounter will be
abelian. Furthermore, the majority of them will be cyclic, as well. Observe
that if G is a group, and if a ∈ G, then the cyclic group 〈a〉 generated by a is
a subgroup of G. A common theme will be the analyses of groups in terms of
their cyclic subgroups.

2.4 Algebra 12

Example 2.4.10. Let (Zn,+) be the group of integers modulo n under addition.
Then, (Zn,+) is a cyclic group. ◊

We refer to (Zn,+) as the cyclic group of order n. Typically, we write this
group as Zn, and the operation is understood to be addition. The next theorem
implies that the only finite cyclic groups are of the form Zn, for some integer n.

Theorem 2.4.11. If G is cyclic, then either G ∼= Zn, for some n, or G ∼= Z.

Proof. Let G = 〈g〉, for some g ∈ G. Suppose for all positive integers n, it
holds that gn 6= e. Furthermore, suppose that there exist integers x , y such that
g x = g y . But then, g x−y = e, which contradicts the fact that there is no n such
that gn = e. Thus, every element of G can be written as g x , for some unique
x . Let ϕ : G −→ Z be given by g x 7→ x . By our preceding argument, ϕ is well-
defined (since G is cyclic) and bijective. Additionally, ϕ(g x g y) = ϕ(g x+y) =
x + y = ϕ(g x) +ϕ(g y), so ϕ is a homomorphism. Thus, G ∼= Z.

Now, suppose gn = e, for some positive integer n. Let n be the smallest
such integer such that gn = e. For any s ∈ Z, suppose s = nr + q. Then,

gs = gnq+r

= (gn)q g r

= g r .

But then s − r < n and gs−r = e, contradicting the fact that n was the least
integer such that gn = e. Thus, the elements e, g, g2, . . . , gn−1 are all distinct,
and every element of G is one of these. So, the map ϕ : Zn −→ G given by
i 7→ g i is a bijection. Additionally,

ϕ(a+ b) = ga+b

= ga g b

= ϕ(a)ϕ(b),

so ϕ is a homomorphism. Thus, G ∼= Zn.

Definition 2.4.12. Let G be a group. The order of G, denoted #G, is the
number of elements in the set G.

Definition 2.4.13. Let G be a group, and let g ∈ G. Then, the order of g,
denoted ord(g) is defined to be #〈g〉.

An alternative way of thinking about the order of a group element is that
ord(g) is the smallest x ∈ Z such that g x = 1.

2.4 Algebra 13

Occasionally, groups will not provide enough algebraic structure for our
purposes. If we augment a group with a second binary operation, and relate
the two operations in the most natural way, we get a ring.

Definition 2.4.14. A triple (R,+, ·) of a set R together with two binary oper-
ations (called “addition” and “multiplication”) is called a ring if the following
axioms hold.

1. (R,+) is an abelian group.

2. For all x , y, z ∈ R, it holds that x ·(y+z) = (x · y)+(x ·z) and (x+ y) ·z =
(x · z) + (y · z) (distributive law).

3. For all x , y, z ∈ R, it holds that (x · y) · z = x · (y · z) (multiplicative
associativity).

4. There exists a 1 ∈ R such that 1 · x = x ·1= x , for all x ∈ R (multiplicative
identity).

One of the most interesting examples of rings will turn out to be extremely
useful, as well.

Definition 2.4.15. Let R be a ring. Then, the set of formal sums

R[X]
def
=

(

∞
∑

i=0

aiX
i | ai ∈ R, all but finite ai equal to 0

)

is called the ring of polynomials over R with indeterminate X. It can easily be
verified to be a ring under the operations of polynomial addition and multipli-
cation.

We refer to polynomials as “formal sums” in the sense that they should be
viewed as strings, rather than as numbers. The operations of polynomial addi-
tion and multiplication are then defined over these sets of strings, to correspond
with their natural interpretations, as if they were acting on functions.

Definition 2.4.16. A ring (F,+, ·) is called a field if the following two axioms
hold.

1. For all x , y ∈ F , it holds that x · y = y · x (multiplicative commutativity).

2. For all x ∈ F , there exists a y ∈ F such that x · y = y · x = 1. In this
case, we denote y as x−1. Additionally, we write x/y for x · y−1, for all
x , y ∈ F (multiplicative inverse).

2.4 Algebra 14

We mention that all of the traditional results of linear algebra hold in a
vector space over a field.

Definition 2.4.17. Let p be a prime number. We denote by Fp the finite field
(Zp,+, ·).

The following theorem, due to Lagrange, will prove invaluable later on.

Theorem 2.4.18. Let x1, . . . , xn be distinct elements of Fq, and let f : Fq −→
Fq. Then, there exists a unique polynomial p ∈ Fq[X] of degree n− 1 such that
f (x j) = p(x j), for j = 1, . . . , n.

Proof. Let

p(X)
def
=

n
∑

i=1

f (x i)λi(X), λ j(X)
def
=

n
∏

i=1,i 6= j

X− x i

x j − x i
, j = 1, . . . , n.

Observe that p has degree n− 1, since each f (x i)λ j(X) has degree n− 1, and
the sum of two degree n−1 polynomials has degree n−1. It is easy to see that

λi(x j) =

¨

0 if i 6= j,
1 otherwise.

For each x j , note that

p(x j) =
n
∑

i=1

f (x i)λi(x j)

= f (x j).

It remains to show that p is unique. Suppose q ∈ Fq[X] with degree n− 1 such
that f (x j) = q(x j), for j = 1, . . . , n. Then, r(X) = p(X)− q(X) is a polynomial
of degree n− 1. Also,

r(x j) = p(x j)− q(x j)

= f (x j)− f (x j)

= 0.

The only way a degree n−1 polynomial can have n roots of 0 is if it is identically
0, so it follows that p = q.

Definition 2.4.19. Let R be a ring. An additive subgroup I of R is called an
ideal if aI ⊆ I , for all a ∈ R.

2.5 Number Theory 15

As with groups, we can define a notion of cosets for ideals.

Definition 2.4.20. Let R be a ring, and let I ⊆ R be an ideal. Then, for any
r ∈ R, the set

r + I
def
= {r + i | i ∈ I}

is called the coset of I containing r.

We can then define two operations on cosets given by (a + I) + (b + I) =
(a+b)+I and (a+I)(b+I) = ab+I , and we can check that the set of cosets of I
form a ring under these operations. We call this ring the quotient ring of R with
respect to I , and write R/I . Again, as with groups, we can also define notions of
homomorphism, isomorphism, and direct product of rings in the natural way.

Definition 2.4.21. Let R be a ring, and let I , J ⊆ R be ideals. We say I and J
are relatively prime if I + J = R.

Observe that the above definition is a generalization of the concept of rel-
ative primality in Z. For instance, if I and J are relatively prime, then for any
r ∈ R, it holds that r = aI + bJ , for some a, b ∈ R.

Theorem 2.4.22 (Chinese Remainder Theorem). Let R be a ring, and let I1, . . . , Ik
be pairwise relatively prime ideals of R, with I their product. Then, R/I ∼=
R/I1× · · · × R/Ik, the isomorphism given by x + I 7→ (x + I1, . . . , x + Ik).

Example 2.4.23. Let n = pq, where p and q are prime. Then, consider the
ring Zn. Observe that I = {nq | n ∈ Zn} and J = {np | n ∈ Zn} are ideals
of Zn. Furthermore, Zn/I ∼= Zp, and Zn/J ∼= Zq, and since p ⊥ q, it holds
that I and J are relatively prime. Thus, by the Chinese Remainder Theorem,
Zn
∼= Zp ×Zq. ◊

2.5 Number Theory

Definition 2.5.1. For n ∈ N, define the Euler totient function φ(n) as the num-
ber of naturals less than n and relatively prime to n.

Proposition 2.5.2. We can inductively define φ(n) as follows.

φ(n) =

¨

pe − pe−1 if n= pe, with p prime,
∏k

i=1φ(p
ei
i) if n= pe1

1 · · · p
ek
k , with pi prime.

Notice that the group Z∗n has order φ(n).

2.6 Complexities of Arithmetic Operations 16

Definition 2.5.3. For n ∈ N, define the Carmichael function λ(n) as the smallest
natural number that satisfies aλ(n) = 1, for all a ∈ Z∗n.

Proposition 2.5.4. We can inductively define λ(n) as follows.

λ(n) =







φ(n) if n= 2e, e ≤ 2,
φ(n)/2 if n= 2e, e ≥ 3,
φ(n) if n= pe, p ≥ 3 prime,
lcmi=1,...,k{λ(p

ei
i)} if n= pe1

1 · · · p
ek
k , with pi prime.

Definition 2.5.5. A number z ∈ Z∗n, for some n ∈ N, is said to be an ith residue
modulo nresidue if there exists a y ∈ Z∗n such that z = y i . If z = y2, for some
y ∈ Z∗n, then z is called a quadratic residue. The set of all quadratic residues
modulo n is denoted by QRn.

Definition 2.5.6. For each prime p and for any x ∈ Z∗p, let

(x | p) def
=

¨

1 if x ∈ QRp,
0 otherwise.

Then, (x | p) is called the Legendre symbol of x modulo p. If n = p1p2 · · · pk,
where p1, · · · , pk are prime, then

(x | n) def
= (x | p1)(x | p2) · · · (x | pk)

is called the Jacobi symbol of x modulo n.

Proposition 2.5.7. Let n ≥ 1, and let x ∈ Z∗n. Then, (x | n) can be computed in
polynomial time in len(x) + len(n).

The reader is referred to [Sho05] for the details of the algorithm.
The following theorem is a corollary of Theorem 2.4.22, and is itself often

called the “Chinese Remainder Theorem.”

Corollary 2.5.8. Let n= n1 · · ·nk, where n1, . . . , nk are pairwise relatively prime,
and let r1, . . . , rk be integers. Then, there is a unique r ∈ Z such that r ≡ ri
(mod ni), for i = 1, . . . , k.

2.6 Complexities of Arithmetic Operations

We summarize the time complexities of arithmetic operations.

2.6 Complexities of Arithmetic Operations 17

Operation Complexity

a+ b Θ(lg a+ lg b) = O(lg n)
a− b Θ(lg a+ lg b) = O(lg n)
a · b Θ(lg a lg b) = O(lg(n)2)
a−1 O(lg(n)2)
g e O(lg e lg(n)2)
gcd(a, b) O(lg(n)2)
a mod n O(lg(n)2)

Table 2.1: Time complexities of arithmetic operations in Zn

Chapter 3

Cryptographic Preliminaries

We now introduce several of the main objects of study. The cryptographic systems
discussed in future chapters rely on several difficult problems. In this chapter, we
establish these problems.

3.1 Adversarial Advantage

In designing a cryptographic system, we aim toward ensuring that no adversary
can compromise it. Realistically, we do not require that the system be secure
against any possible adversary. Rather, we require that the system be secure
against any realistic adversary. Furthermore, it may not be reasonable to require
that the system is always secure. A system that is almost always secure may be
good enough. Thus, we design our systems so that they are almost always
secure against any realistic adversary.

The preceding requires some formalization. First, when we talk about “re-
alistic” adversaries, we are making a claim about the computational ability of
the adversary. Specifically, we view realistic adversaries as those adversaries
that can be modeled by probabilistic polynomial-time Turing machines. Sec-
ond, when we say that a system is “almost always secure,” we mean that the
probability that an adversary can defeat the system is “negligible.” This term
has a formal definition, given below.

Definition 3.1.1. A function f : N−→ R+ is said to be negligible if f ∈ o(1/nk),
for all k ∈ N.

Intuitively, we are trying to capture the notion that the probability that the
system can be defeated is negligible if the odds cannot be beaten within the
lifetime of any polynomially-bounded adversary.

18

3.2 The Discrete Logarithm 19

Remark 3.1.2. We sometimes use the notation “negl” to refer to an anonymous
negligible function.

We would now like to develop a formalization of what it means to talk
about how likely it is for an adversary to defeat the system.

Definition 3.1.3. Let E = {Ei}i∈N and F = {Fi}i∈N be sequences of distribu-
tions, called ensembles, over a sample space Ω. Define, for any PPTA running
in time polynomial in lg |Ω|,

Adv(E,F)
A (1λ)

def
=
�

� Pr
a←Eλ
[A (a) = 1]− Pr

a←Fλ
[A (a) = 1]

�

�.

If, for all PPTA , it holds that Adv(E,F)
A (1λ) is negligible for some λ, we say that

E and F are indistinguishable, and write E ≈ F .

3.2 The Discrete Logarithm

Modern cryptography is based on the difficulty of solving certain problems in
computational number theory. Thus, the security of all our cryptosystems will
be shown by reduction to these hard problems. The first of these problems is
the discrete logarithm problem, defined below.

Definition 3.2.1. Given h ∈ 〈g〉, the problem of finding x such that g x = h
is called the discrete logarithm problem (DLOG). In this case, x is denoted by
logg h.

It is important to note that the discrete logarithm only bears a passing re-
semblance to logarithms in the real numbers. In particular, none of the tech-
niques for computing and approximating logarithms in the reals works for log-
arithms in arbitrary cyclic groups.

3.2.1 Algebraic Setting

When we consider the discrete logarithm problem, it is important that we are
aware of the fact that the problem may not be equally difficult in all groups. As
an example, consider a group whose order has many small prime factors. Recall
that #Z∗p = φ(p) = p−1. Suppose that p−1= q1 ·q2 · · ·qn, where q1, q2, . . . , qn
are “small” compared to p. Based on this factorization of p− 1, we see that for
each qi , there is a subgroup Gi ≤ Z∗p whose order is small compared to that of
Z∗p.

3.2 The Discrete Logarithm 20

Lemma 3.2.2. Let p be a prime such that p − 1 = q1 · q2 · · ·qn. Let Gi be the
subgroup of Z∗p of order qi . Then, for each i ∈ {1, . . . , n}, there is a homomorphism
fi : Z∗p −→ Gi given by

x 7→ x (p−1)/qi .

Suppose we are given y = g x ∈ Z∗p, and we would like to compute x =
logg y . First, we can find the projection of y in each Gi by computing x i =
fi(y). Then, we can solve the discrete logarithm in Gi by brute force, since #Gi
is small. Now, observe that we have the system of equations x ≡ x i (mod qi).
Finally, we can apply the Chinese Remainder Theorem to this system to get x .

Obviously, to avoid this sort of attack, we should have selected p such that
p− 1 has very few small factors.

Definition 3.2.3. A prime p is called a safe prime if p = 2q+1, for some prime
q.

If p is a safe prime, then p− 1 has only two factors: 2 and q. Thus, Z∗p has
only two non-trivial subgroups: one of order 2, and one of order q. The q-order
subgroup turns out to be QRp, and it is in this group that we wish to perform
all of our computations, as it has no non-trivial subgroups. The distribution of
safe primes among the prime numbers is not well understood. It is possible that
they are considerably less dense. In fact, it is unknown whether or not there
are even an infinite number of safe primes.

3.2.2 The Diffie-Hellman Problems

Suppose Alice and Bob want to agree on a secret key. Furthermore, they wish
to perform this agreement over an insecure channel, so that no one who is
privy to the transcript of their communication can deduce the key. Diffie and
Hellman propose [DH76] the protocol in Figure 3.1.

Now, suppose that Eve, an eavesdropper, wishes to compute k for herself.
That is, she knows g x and g y (these were sent over the channel), and she
wishes to compute g x y . This problem can be stated as follows.

Definition 3.2.4. Given g x , g y ∈ 〈g〉, the problem of finding g x y is called the
computational Diffie-Hellman problem (CDH).

It is clear that an adversary who can solve DLOG can certainly break the DH
key exchange. Indeed, this is the main intuition behind its security. However,
the CDH is a more accurate task for the adversary who wishes to recover the

3.2 The Discrete Logarithm 21

1. Alice and Bob agree on a cyclic group Z∗p and a gen-
erator g of a q-order subgroup.

2. Alice chooses x ∈U Zq, and Bob chooses y ∈U Zq.

3. Alice sends Bob g x , and Bob sends Alice g y .

4. Alice computes k ← (g y)x , and Bob computes k ←
(g x)y .

Figure 3.1: Diffie-Hellman Key Exchange

exchanged key. In principle, it may be possible to solve CDH without solving
DLOG, using some unknown technique.

The question then arises: is CDH itself the necessary task for an adversary
to break in order to compromise the DH key exchange? Suppose an adversary
is unable to recover the full key, but it can recover, say, one half of the bits of
the key. This adversary has not solved CDH, but it has in some sense compro-
mised the system. Ideally, the adversary would be able to recover no bits of
the key. The most general formulation of this goal would be to say that the
adversary cannot distinguish between a random transcript of the protocol, and
a transcript in which an actual key is exchanged. If this property is satisfied,
then it is clear that the adversary could not have gained any useful information
about the key from witnessing the transcript of the protocol, as it cannot even
tell if a key has been exchanged or not. We state this formally below.

Definition 3.2.5. Given g x , g y , gz ∈ 〈g〉, the problem of determining whether
or not z = x y is called the decisional Diffie-Hellman problem (DDH).

We can formally state the relationships between the three discrete log prob-
lems.

Theorem 3.2.6. In any cyclic group, DDH≤P CDH≤P DLOG.

Proof. Suppose an adversary can solve DLOG. Then, given (ga, g b), the adver-
sary can compute both a = logg ga and b = logg g b and then compute gab

directly. Thus, the adversary can solve CDH. Now, given (ga, g b, g c), the ad-
versary, being able to compute CDH, can compute gab and compare it with g c ,
thus solving DDH.

Theorem 3.2.6 says that DLOG is harder than both CDH and DDH. That is,
if an adversary is able to solve DLOG, it can easily solve the other two. With
this in mind, we see that the assumption that DDH is hard is in some sense the

3.2 The Discrete Logarithm 22

strongest assumption we can make. If it turns out to be true, then we know
that all three problems must be difficult to solve.

Now that we have stated the problems, we must formalize what it means
to assume that these problems are difficult.

Definition 3.2.7. Let G = 〈g〉 be a cyclic group. The description of G, denoted
desc(G), is a string representation of the group, consisting of: an efficient mem-
bership test, a description of the group operation, a representation of the iden-
tity, and an efficient algorithm for computing the inverse of a group element1.
Suppose G is a PPT that on input 1λ, where λ is a security parameter, returns
desc(G) (of length polynomial in λ), for some group G. We call G a group
generator for G.

It is important to notice that desc(G) contains no information about the
structure of G. It only contains the necessary information to perform compu-
tations within the group. This is a necessary restriction, as most cryptographic
systems rely on the fact that the adversary does not have too much knowledge
of the structure of the underlying group.

Definition 3.2.8. Let G be a group generator that on input 1λ returns desc(G),
where G has generator g of order q. We say G satisfies the decisional Diffie-
Hellman assumption if, for all PPTA ,

�

� Pr
x ,y←[q]

[A (desc(G),g x , g y , g x y) = 1]−

Pr
x ,y,z←[q]

[A (desc(G), g x , g y , gz) = 1]
�

�≤ ε(λ),

where ε is a negligible function. That is, the DDH problem is hard to solve in
G.

It should be noted that the DDH assumption does not hold in all groups.

Proposition 3.2.9. The DDH assumption does not hold in Z∗p, for any prime p.

Proof. We wish to construct a PPTA that can distinguish between DDH tuples
and random tuples. Given (a, b, c), the adversary A will return 1 if either all
three of (a | p), (b | p), and (c | p) equal −1, or if both (a | p) and (b | p)
equal 1 but (c | p) equals −1. Thus, Prx ,y,z←[q][A (g x , g y , gz) = 1] = 1 and
Prx ,y←[q][A (g x , g y , g x y) = 1] = 1/2. Since the Jacobi symbol is computable
in polynomial time, AdvDDH

A = 1/2.

1It is outside the scope of this thesis to explain precisely how this information can be repre-
sented. It should suffice to say that there exists some standard encoding that can be interpreted
by any Turing machine that needs to.

3.3 The Composite Residuosity Problem 23

The group Z∗p fails the DDH assumption because it is easy to determine the
property of quadratic residuosity. This leads us to believe that if we use a group
in which it is not so easy to distinguish between elements, the DDH assumption
might hold.

Assumption 3.2.10. Let G be a group generator that on input 1λ, selects a ran-
dom safe prime p = 2q + 1 such that len q = λ, and g ∈U QRp, and outputs
desc(QRp). Then, G satisfies the decisional Diffie-Hellman assumption.

This assumption says that the DDH problem is difficult to solve in QRp ≤ Z∗p,
for sufficiently large primes p. Realistically, we demand that the size of p be on
the order of 1024 bits or larger.

We conclude the section on the Diffie-Hellman problems by providing one
final assumption which will be used later on.

Definition 3.2.11. Suppose p and q are prime numbers of approximately the
same length. Then, n= pq is called an RSA composite.

Assumption 3.2.12 (Composite-DDH Assumption). Let G be a group generator
that on input 1λ, selects an RSA composite n= pq such that len p = λ, an element
g ∈U QRn, and outputs desc(QRn). Then, G satisfies the decisional Diffie-Hellman
assumption.

3.3 The Composite Residuosity Problem

There is another class of number theoretic problems that we will study. These
are based on the difficulty of determining residuosity classes in groups of com-
posite order. In the remainder of this section, it is assumed that n = pq is an
RSA composite, n⊥ φ(n), and s ≥ 1. Then,

φ(ns+1) = φ(ps+1qs+1)

= φ(ps+1)φ(qs+1)

= φ(psqs(p− 1)(q− 1))

= nsφ(n).

Thus, by the Chinese Remainder Theorem, Z∗
ns+1
∼= Zns ×Z∗n.

The fundamental computational problem that we consider is the following.

Definition 3.3.1. The problem of distinguishing nth residues from nth non-
residues is called the composite residuosity problem, and is denoted by CR[n].

3.3 The Composite Residuosity Problem 24

As with the Diffie-Hellman problem, we define an property that we expect
group generators to have if they are to be considered secure. The following
assumption is known as the decisional composite residuosity assumption (DCRA).

Assumption 3.3.2 (Decisional Composite Residuosity Assumption). Let G be
a PPT that, on input 1λ, outputs a random RSA composite n = pq such that
len p = λ. Then, for all PPTA ,

�

� Pr
x←Z∗

ns+1

[A (n, x) = 1]− Pr
x←Z∗

ns+1/Zns
[A (n, x) = 1]

�

�≤ ε(λ),

where ε is a negligible function. That is, CR[n] is a difficult problem.

We further explore the group structure of Z∗
ns+1 with the following lemma.

Lemma 3.3.3. Provided s < p, q, the element 1+ n has order ns in Z∗
ns+1 .

Proof. We would like to find the minimum value of i for which (1+ n)i ≡ 1
(mod ns+1). By the binomial theorem, we have that

(1+ n)i =
i
∑

j=0

�

i

j

�

n j ,

which is 1 (mod ns+1) if and only if

i
∑

j=1

�

i

j

�

n j−1 ≡ 0 (mod ns).

Now, if i = ns, then

ns
∑

j=1

�

ns

j

�

n j−1 =
�

ns

1

�

n0+
�

ns

2

�

n+ · · ·+
�

ns

ns

�

nns−1

≡ 0 (mod ns).

Thus, it follows that ord(1+ n) | ns. That is, ord(1+ n) = pαqβ , with α,β ≤ s.
Let a = ord(1+ n) = pαqβ . We now claim that each term in

∑a
j=1

�a
j

�

n j−1 is
divisible by a. Suppose j ≤ s. Then, j! ≤ s!, and since s < p, q, we have that j!
is less than both p! and q!. So, neither p nor q divides j!. Thus,

�

a

j

�

=
a!

j!(a− j)!

=
a(a− 1) · · · (a− j)!

j!(a− j)!

=
a(a− 1) · · · (a− j+ 1)

j!
,

3.3 The Composite Residuosity Problem 25

which is divisible by a. So, each term in
∑a

j=1

�a
j

�

n j−1 is divisible by a. Now,

suppose that a = pαqβ < ns, and without loss of generality that α < s. We now
want to show that

∑a
j=1

�a
j

�

n j−1 is divisible by ns. This follows from the fact

that
∑a

j=1

�a
j

�

n j−1 ≡ 0 (mod ns), by the way we chose a. Now, dividing both

sides by a, we see that that ns/a divides
�
∑a

j=1

�a
j

�

n j−1�/a. But this implies

that p divides
�
∑a

j=1

�a
j

�

n j−1�/a, which is 1 (mod p), a contradiction. Thus,
a ≥ ns, and since a | ns, it follows that a = ns. That is, ord(1+ n) = ns.

Since #H = φ(n), and φ(n) ⊥ ns, it follows that the coset (1+ n)H is a
generator of Z∗

ns+1/H. Thus, we can order the cosets of H in Z∗
ns+1 as

H, (1+ n)H, (1+ n)2H, . . . , (1+ n)n
s−1H.

Lemma 3.3.4. The map ψs : Zns ×Z∗n −→ Z
∗
ns+1 given by (x , r) 7→ (1+ n)x rns

is
an isomorphism.

Proof. Let (x1, r1), (x2, r2) ∈ Zns ×Z∗n. Then,

ψs
�

(x1, r1) · (x2, r2)
�

=ψs(x1+ x2, r1r2)

= (1+ n)x1+x2(r1r2)
ns

= (1+ n)x1 rns

1 (1+ n)x2 rns

2

=ψs(x1, r1) ·ψs(x2, r2).

Thus, ψs is a homomorphism. Now, suppose (1+ n)x1 rns

1 = (1+ n)x2 rns

2 . Then,
(1+ n)x1−x2 = (r2/r1)n

s
. But, r2/r1 ∈ Z∗n, so (r2/r1)n

s
= 1, and r2 = r1. Then,

(1 + n)x1−x2 = 1, and so x1 = x2, implying that ψs is injective. Finally, let
g ∈ Z∗

ns+1 . Then, g is a member of some coset (1+ n)x H. Let r ∈ H. Then,

(1+ n)x rns
= g. So, ψs is surjective, and is thus an isomorphism.

Furthermore, we can see that the isomorphism is easy to compute in both
directions. This fact is essential for producing the encryption and decryption
functions of the Paillier cryptosystem. The proof of the following lemma can be
found in [DJ00].

Lemma 3.3.5. The map ψs can be inverted in polynomial time given λ(n).

Proof. First, observe

L((1+ n)i mod ns+1) = (i+
�

i

2

�

n+ · · ·+
�

i

s

�

ns−1)mod ns.

3.4 Encryption 26

Define i j to be i mod n j . Notice that i j = i j−1 + kn j−1, for some 0 ≤ k < n.
Now, observe that

L((1+ n)i mod n j+1) = (i j +
�

i j

2

�

n+ · · ·+
�

i j

j

�

n j−1)mod n j .

For 0< t < j, we have that
� i j

t+1

�

nt =
�i j−1

t+1

�

nt mod n j . Now,

L((1+ n)i mod n j+1) =

(i j−1+ kn j−1+
�

i j−1

2

�

n+ · · ·+
�

i j−1

j

�

n j−1)mod n j .

Thus,

i j = L((1+ n)i mod n j+1)− (
�

i j−1

2

�

n+ · · ·+
�

i j−1

j

�

n j−1)mod n j .

Thus, given c = (1 + n)x rns
, we compute cλ = (1 + n)λx . Given the above

relation, we can then find x .

Definition 3.3.6. For w ∈ Z∗
ns+1 , the nth residuosity class of w, denoted [w], is

the unique x ∈ Zns for which there exists a y ∈ Z∗n such that ψs(x , y) = w.

From the definition of the factor group Z∗
ns+1/Z∗n, we notice that [w] = 0 if

and only if w is an nth residue modulo ns+1. Furthermore, for all w1, w2 ∈ Z∗ns+1 ,
it follows that [w1w2] = [w1] + [w2]. That is, the class function w 7→ [w] is a
homomorphism from Z∗

ns+1 to Zn.

3.4 Encryption

Suppose Alice wishes to send a message to Bob over a public channel in such a
way that no party who intercepts the message can read it. To perform this task,
Alice and Bob should use an encryption scheme.

3.4.1 Formal Definition

We can formalize the notion of encryption as follows.

Definition 3.4.1. A public-key cryptosystem, known henceforth as a cryptosys-
tem, is a 7-tuple (M , C , K , R,Gen, Enc,Dec), such that

1. M is the message space.

3.4 Encryption 27

Alice
Bob

Enc Dec

Gen

kp

m
c m

ks

c

kp ks

Figure 3.2: Diagram of encryption. Alice wants to send a message m to Bob,
and encrypt it as a ciphertext c.

2. C is the ciphertext space.

3. K is the key space.

4. R is the randomness space.

5. Gen: N× R−→ K × K is a key generation algorithm.

6. Enc: M × K × R−→ C is an encryption algorithm.

7. Dec: C × K −→ M is a decryption algorithm.

If m ∈ M and k ∈ K , we denote by Enck(m; r) the ciphertext Enc(m, k, r).
Likewise, for c ∈ C and k ∈ K , we denote by Deck(c) the plaintext Dec(c, k).

Remark 3.4.2. The reader will note that we will always use the word “cryp-
tosystem” to refer to asymmetric, probabilistic cryptosystems.

3.4.2 Security Definitions

To evaluate the security of a public key cryptosystem, we must have a clear
definition of “security.” When we formulate security definitions, we consider
an idealized “game” that we play with the adversary. The game must capture
exactly the security requirements of a real-life execution of the system. The
system is considered secure if the probability that the game succeeds is inde-
pendent of the abilities of the adversary.

3.4 Encryption 28

GameA ,C
IND-CPA(1

λ) Random variables
(kp, ks)← Gen(1λ;ρ) ρ← R
(m0, m1, aux)←A1(kp)
c← Enckp

(mb; r) b← {0,1}, r ← R
b∗←A2(c, aux)
if b = b∗ then return 1
else return 0

Figure 3.3: The IND-CPA game

IND-CPA Security

Our first notion of security for public-key cryptosystems is indistinguishability
under chosen plaintext attack [GM84] (IND-CPA). This notion means that the
adversary is unable distinguish between the encryptions of two plaintexts that
it has chosen itself. We can view this as the minimum necessary security for a
cryptosystem, as it ensures that the adversary cannot recover any information
about a plaintext by inspecting the ciphertext.

Given a public key cryptosystem, we can define the following game, called
the IND-CPA game. The game is parametrized by an adversaryA = (A1,A2).

Definition 3.4.3. A cryptosystem C is said to be IND-CPA-secure if for all PPT
A = (A1,A2),

Pr
�

GameA ,C
IND-CPA(1

λ) = 1
�

=
1

2
+ ε(λ),

where ε is a negligible function of λ.

ROR-CPA Security

We now define a notion of security that seems to be a loosening of IND-CPA.
In this model, called real or random chosen plaintext attack, the adversary is
faced with the task of determining whether a ciphertext encrypts a message of
its choosing, or a random message.

Definition 3.4.4. A cryptosystem C is ROR-CPA-secure if for all PPT A =
(A1,A2),

Pr
�

GameA ,C
ROR-CPA(1

λ) = 1
�

=
1

2
+ ε(λ),

where ε is a negligible function of λ.

3.4 Encryption 29

GameA ,C
ROR-CPA(1

λ) Random variables
(kp, ks)← Gen(1λ;ρ) ρ← R
(m0, aux)←A1(kp)
m1 ∈U M
c← Enckp

(mb; r) b← {0, 1}, r ← R
b∗←A2(c, aux)
if b = b∗ then return 1
else return 0

Figure 3.4: The ROR-CPA game

Proposition 3.4.5. If a cryptosystem is ROR-CPA-secure, then it is also IND-CPA-
secure.

Proof. Let GOA be a modification of the IND-CPA game, on input 1λ, where
the adversary A receives the ciphertext from the oracle O . We define four
oracles as follows. Oracle P takes as input a plaintext, and encrypts the given
plaintext. OracleR takes as input a plaintext, and encrypts a random plaintext,
ignoring its input. OracleP1 takes as input a pair of plaintexts, and encrypts the
first one. Oracle P2 takes as input a pair of plaintexts, and encrypts the second
one. LetA be an IND-CPA adversary. LetA (1) be an adversary who simulates
A and at the first stage returns the first plaintext given by A . Likewise, let
A (2) be an adversary who simulatesA and at the first stage returns the second
plaintext given byA . It is then clear that

Pr[GPA (i) = 1] = Pr[GPi
A = 1],

for i = 1, 2. Now, by the assumption that the cryptosystem is ROR-CPA-secure,
we have that for all adversariesB ,

�

�Pr[GPB = 1]− Pr[GRB = 1]
�

�= negl.

Thus,
�

�Pr[GRA (i) = 1]− Pr[GPi
A = 1]

�

�= ε,

for i = 1, 2, where ε is negligible. Then,

AdvIND-CPA
A (1λ) =

�

�Pr[GP2
A = 1]− Pr[GP2

A = 1]
�

�

= |Pr[GP1
A = 1]− Pr[GRA (1) = 1]−

Pr[GP2
A = 1] + Pr[GRA (2) = 1]

�

�

≤ 2ε,

which is negligible. Thus, ROR-CPA security implies IND-CPA security.

3.4 Encryption 30

GameA ,C
IND-CCA2(1

λ) Random variables
(kp, ks)← Gen(1λ;ρ) ρ← R
(m0, m1, aux)←A D1 (kp)
c← Enckp

(mb; r) b← {0, 1}, r ← R

b∗←A D
′

2 (c, aux)
if b = b∗ then return 1
else return 0

Figure 3.5: The IND-CCA2 game

IND-CCA2 Security

The strongest notion of security that we present is the indistinguishability under
adaptive chosen ciphertext attacks [RS92] (IND-CCA2). In an adaptive chosen
ciphertext attack, the adversary is allowed access to a decryption oracle in two
steps of the game. First, it is allowed to inspect the public key, make as many
queries as needed to the decryption oracle, and is required to produce two
plaintexts. Then, it is presented with a random ciphertext, and is again allowed
to query the decryption oracle, with the restriction that it cannot directly ask it
to decrypt the challenge ciphertext. Finally, it must determine which of its two
plaintexts is the decryption of the challenge ciphertext.

The game is shown in Figure 3.5. Observe that the adversaryA has access
to two decryption oracles, D and D′. The oracle D functions as a normal de-
cryption algorithm, which can decrypt any ciphertext. The oracleD′ is the same
except that it will return a failure if used to decrypt the ciphertext Enckp

(mb)
that is given toA .

At first glance, an adversary that can conduct an adaptive chosen cipher-
text attack would seem to be unrealistically powerful. Surprisingly, however,
a real-life attack was demonstrated that follows this pattern. In 1998, Daniel
Bleichenbacher showed [Ble98] that an attacker can perform decryption or
signing with RSA keys by exploiting flaws in the PKCS #1 encryption standard.
The practical significance of this discovery is that it leaves SSL version 3 open
to adaptive chosen ciphertext attacks.

Thus, IND-CCA2 would appear to be the “correct” notion of security for
asymmetric cryptosystems. Nonetheless, this definition of security, as will be
shown in Chapter 4, is too powerful for the type of voting we are interested in,
as will be shown in Proposition 4.1.2.

3.5 Conclusion 31

3.5 Conclusion

We have introduced several important ideas in this chapter. First, we have de-
scribed what it means for a system to be considered secure. That is, assuming
the difficulty of some computational problem, a system is secure against an ad-
versary if the adversary cannot distinguish between a real version of the system
and an idealized version of the system, except with negligible probability. We
have presented two problems which are believed to be computationally diffi-
cult, and upon which cryptographic systems can be constructed. Finally, we
have introduced the idea of public-key encryption, and given three definitions
of security for public-key encryption schemes. In the coming chapters, we will
see how these ideas can be used to construct several different cryptographic
primitives.

Chapter 4

Homomorphic Encryption
Schemes

In this chapter, we explore a desirable property of encryption schemes for voting.

4.1 Introduction

One of our goals is to design cryptographic systems that naturally lend them-
selves to voting. The basic primitive we use is known as a homomorphic encryp-
tion scheme, introduced by Benaloh [Ben87]. To illustrate the behavior of this
primitive, imagine that we have an encryption function Enc, and a sequence of
ciphertexts Enc(m1), Enc(m2), . . . , Enc(mn). Suppose we would like to compute
Enc(m1+m2+· · ·+mn). This would appear impossible, as we do not posses the
messages m1, m2, . . . , mn, and thus cannot add them and compute the encryp-
tion. However, if we have a homomorphic encryption function, this becomes
possible. Presuming that there is a operation over ciphertexts (say, multiplica-
tion), it might hold that Enc(m1)Enc(m2) · · ·Enc(mn) = Enc(m1+m2+ · · ·mn).
That is, we can add the messages without even knowing what they are, pro-
vided we can compute the operation defined over the ciphertext space.

Definition 4.1.1. Let C = (M , C , K , R, Gen,Enc, Dec) be a cryptosystem. Sup-
pose (M ,+), (R,⊕), and (C , ·) are abelian groups with Enck a homomorphism
from M × R into C . Suppose that if m and m′ are drawn uniformly from M ,
and r and r ′ are drawn uniformly from R, then Enck(m+m′; r ⊕ r ′) is drawn
uniformly from C . Then, we say that C is a homomorphic cryptosystem.

Intuitively, given two ciphertexts, a homomorphic cryptosystem lets us pro-
duce a third ciphertext encrypting some function of the two plaintexts. Why

32

4.2 The Elgamal Cryptosystem 33

is this useful for voting? If we treat votes as being group elements, we would
like to be able to add encryptions of these elements without knowing the cor-
responding plaintexts. A homomorphic encryption system allows us to add the
ciphertexts, according to the group operation of the ciphertext space, which
will then be mirrored in the plaintext group. Thus, we can preserve the privacy
of voters, while still performing computations with their votes.

It should be noted that homomorphic encryption does not come without a
price. Specifically, there is a reduction in security that makes any homomorphic
encryption unsuitable for secure data transmission.

Proposition 4.1.2. If C is a homomorphic cryptosystem, then C is not IND-CCA2
secure.

Proof. Recalling Figure 3.5, suppose thatA2 is given the ciphertext c. Consider
the following behavior ofA2. First, it will choose m ∈ M , and query the decryp-
tion oracle to get c′ = Enckp

(m; r). Then, it will use the homomorphic prop-
erty of the cryptosystem to compute d = c · c′ = Enckp

(m; r) · Enckp
(mb; r ′) =

Enckp
(m+mb; r+ r ′). Finally, it will use the decryption oracle again to retrieve

m+mb. Subtracting m will reveal the plaintext mb. Note that the decryption
oracle will successfully decrypt d, as it is not the challenge ciphertext.

Thus, the requirements of IND-CCA2 are too strong for the homomorphic
approach to voting. Accordingly, we restrict ourselves to examining only IND-
CPA secure cryptosystems. In this chapter, we will explore three such systems:
those of Elgamal, Paillier and Damgård/Jurik.

4.2 The Elgamal Cryptosystem

Elgamal [Elg85] proposed a cryptosystem based on the discrete log problem.
The cryptosystem is illustrated in Figure 4.1.
Efficiency. The key generation algorithm of Elgamal runs in an unspecified
amount of time. This is because it is necessary to generate a safe prime, which
could take a while. Fortunately, the safe prime itself is not secret, and can be
reused. Assuming that the prime is already generated, the process involves two
modular exponentiations, encryption involves three modular exponentiations,
and decryption involves one.

Proposition 4.2.1. The Elgamal cryptosystem is IND-CPA-secure under the deci-
sional Diffie-Hellman assumption.

4.2 The Elgamal Cryptosystem 34

Key generation Alice chooses a random prime number p,
and selects g as a generator of an order q subgroup
of Z∗p. She then selects x ∈U Zq and sets h← g x . She
publishes (g, p, q, h) as her public key, and keeps x as
her private key.

Encryption Bob selects a message m ∈ Z∗p, and r ∈U Zq.
He then computes (G, H) ← (g r , hr m), and sends
(G, H) to Alice.

Decryption Alice recovers m as H/G x .

Figure 4.1: The Elgamal cryptosystem

Proof. Given a PPT A such that AdvIND-CPA
A is non-negligible, we wish to con-

struct a PPT B such that AdvDDH
B is non-negligible. On input (g, a, b, c), we

will have B pass the input g, a into A1. Then, A1 will return two messages,
m0 and m1. We then select a random bit b, and send the ciphertext (b, cmb) to
A2, and return 1 if and only ifA2 guessed the correct bit.

Observe that if B is input a tuple of the form (g, g x , g y , g x y), then A will
receive a correct encryption of one of m0 or m1, and hence the probability that
A2 outputs the correct bit is 1/2 plus some non-negligible quantity. If B is
input a tuple of the form (g, g x , g y , gz), then the probability thatA2 is correct
is only 1/2, as the ciphertext does not encrypt one of the selected values. Thus,
the difference between the two probabilities is non-negligible, and we have
constructed a DDH distinguisher.

Elgamal’s original cryptosystem is multiplicatively homomorphic, but not
additively homomorphic, and it is the additive property that we are after when
designing voting schemes. However, the system easily lends itself to an addi-
tively homomorphic version. To see how, consider the modification to Elgamal
described in Figure 4.2. Note that this cryptosystem requires Alice to compute
m from gm. There are efficient ways to perform this computation, since in an
election the range of m will be limited. For example, Shanks’ baby-step giant-
step algorithm [Sha69] can be performed in time O(

p
`), where ` is the number

of possible values taken by m.

Proposition 4.2.2. The additively homomorphic Elgamal cryptosystem is addi-
tively homomorphic.

Proof. Suppose we have two Elgamal ciphertexts, Ench(r, m) and Ench(r ′, m′).

4.3 The Paillier Cryptosystem 35

Key generation Alice chooses a random prime number p,
and selects g as a generator of an order-q subgroup
of Z∗p. She then selects x ∈U Zq and sets h← g x . She
publishes (g, p, q, h) as her public key, and keeps x as
her private key.

Encryption Bob selects a message m ∈ Zq, and r ∈U Zq.
He then computes (G, H) ← (g r , hr gm), and sends
(G, H) to Alice.

Decryption Alice recovers gm as H/G x . She then uses
some efficient algorithm to compute m from gm.

Figure 4.2: The additively homomorphic Elgamal cryptosystem

Multiplying ciphertexts pairwise, we see that

Ench(r, m) · Ench(r
′, m′) = (g r , hr gm) · (g r ′ , hr ′ gm′)

= (g r+r ′ , hr+r ′ gm+m′)

= Ench(r + r ′, m+m′).

4.3 The Paillier Cryptosystem

Damgård and Jurik devised a generalization of Paillier’s scheme, based on the
composite residuosity assumption, shown in Figure 4.3. We note that the
Damgård-Jurik version of Paillier’s scheme is used in this thesis only for the
sake of generality. In practice, it is not necessary in the case of voting to use
anything value for s other than 1, and so the cryptosystem reduces to that of
Paillier.
Efficiency. To choose d, Alice will use the Chinese Remainder Theorem. En-
cryption involves two modular exponentiations, and decryption uses the algo-
rithm given in Lemma 3.3.5, with one modular exponentiation.

We now show that the Paillier cryptosystem is correct. That is, given a
ciphertext, it is possible to recover the plaintext given the secret key.

Proposition 4.3.1. The Paillier cryptosystem is correct.

Proof. Suppose c is a ciphertext. Then, Alice can recover the message m by

4.3 The Paillier Cryptosystem 36

For each s ∈ N, define a cryptosystem as follows.

Key generation Alice chooses a random RSA composite
n= pq, and sets g ← 1+ n. Additionally, she chooses
d such that d ⊥ n, and d ≡ 0 (mod λ). She publishes
(n, g) as her public key, and keeps d as her private
key.

Encryption Bob selects a message m ∈ Zns , and r ∈U Z∗n.
He then computes c = gmrns

and sends c to Alice.

Decryption Alice receives a ciphertext c ∈ Z∗
ns+1 . She re-

covers the message by computing Ls(cd)−1.

Figure 4.3: The Paillier cryptosystem

computing

cd = (gmrns
)d

= ((1+ n)mrns
)d

= (1+ n)md rdns

= (1+ n)md .

By Lemma 3.3.5, she can easily compute md from (1+ n)md . Finally, she can
recover m by computing (md) · d−1.

Proposition 4.3.2. The Paillier cryptosystem is additively homomorphic.

Proof. This follows easily from Lemma 3.3.4.

Proposition 4.3.3. Under the DCRA, the Paillier cryptosystem satisfies IND-CPA
security.

Proof. We only present a proof for the case when s = 1, as shown by Paillier
[Pai99]. The reader is referred to [DJ00] for the case when s is polynomially
bounded by the security parameter. Suppose A is an IND-CPA adversary, and
we would like to construct a nth residue distinguisher B . Given a candidate
nth residue c, we receive two messages m0 and m1 from A . Then, we pick a
random bit b and send A the ciphertext cg−mb . Observe that a ciphertext c is
the encryption of m if and only if cg−m is an nth residue modulo n2.

4.4 The Damgård-Jurik Cryptosystem 37

4.4 The Damgård-Jurik Cryptosystem

Key generation Alice chooses an RSA composite n = pq
such that p = 2p′ + 1 and q = 2q′ + 1, where p and
q are safe primes. She then selects g ∈U QRn, and
α ∈U ZN , where N = bn/4c, and sets h= gα. She sets
her public key as (n, g, h), and her private key as α.

Encryption Bob selects a message m ∈ Z+, and r ∈U ZN .
He then computes c = (g r , (hr)n

s
(1+n)m) ∈ Z∗n×Zns+1

and sends c to Alice.

Decryption Alice receives a ciphertext (G, H). She recov-
ers the message by computing

m= Ls(H(G
α)−ns

).

Figure 4.4: The Damgård-Jurik cryptosystem

Damgård and Jurik have proposed a cryptosystem which is a hybrid of the
Paillier and Elgamal cryptosystems. It is shown in Figure 4.4.
Efficiency. Key generation uses one modular exponentiation, and also involves
generating two safe primes. In contrast to Elgamal, these safe primes are secret,
and must be generated again each time a new key-pair is made. Encryption and
decryption are the same as in Paillier.

Proposition 4.4.1. The Damgård-Jurik cryptosystem is correct.

Proof. Observe that

m= Ls(H(G
α)−ns

)

= Ls((g
αr)n

s
(n+ 1)m(g rα)−ns

)

= Ls((n+ 1)m).

Thus, m is easily computed.

Proposition 4.4.2. The Damgård-Jurik cryptosystem is additively homomorphic.

Proof. Suppose we have two ciphertexts, Ench(r, m) and Ench(r ′, m′). Multi-

4.4 The Damgård-Jurik Cryptosystem 38

plying ciphertexts pairwise, we see that

Ench(r, m) · Ench(r
′, m′) = (g r , (hr)n

s
(n+ 1)m) · (g r ′ , (hr ′)n

s
(n+ 1)m

′
)

= (g r+r ′ , (hr+r ′)n
s
(n+ 1)m+m′)

= Ench(r + r ′, m+m′).

One point must be clarified immediately. Ideally, Alice would choose the
private key α randomly from Zp′q′ , observing that #QRn = p′q′. However,
knowledge of p′q′ implies knowledge of the factorization of n, and we would
potentially like to have n be a system constant, not generated by Alice. To solve
this problem, we select α from ZN , where N is sufficiently large enough so that
gα is chosen from a distribution statistically indistinguishable from 〈g〉. The
following claim formalizes our goal.

Lemma 4.4.3. Let D1 be the uniform distribution over Zp′q′ , and let D2 be the
uniform distribution over ZN , where N = bn/4c. Let X and Y be random variables
distributed according to D1 and D2, respectively. Then, X ≈ Y .

We would now like to argue the security of the Damgård-Jurik cryptosys-
tem. Before we do this, we prove that modifying the cryptosystem somewhat
does not change the security.

Lemma 4.4.4. The Damgård-Jurik cryptosystem with r ∈U QRn is ROR-CPA se-
cure if and only if the cryptosystem where r ∈U Z∗n is ROR-CPA secure.

Proof. We shall refer to the Damgård-Jurik cryptosystem with r ∈U QRn as Q.
Suppose there exists an adversaryA who can break the security of Q. We then
construct an adversary B who can break the security of the Damgård-Jurik
cryptosystem . This adversary will operate as follows. On input public key n,
it will forward n to A , receive a message m, and return m. It will then get
input c, where c is an encryption of either m or a random element of Zns . It
will compute c′ = (c(n+1)−m)2(n+1)m mod ns+1, and send c′ toA , returning
the output b.

Suppose c is an encryption of the message m. Then,

c′ =
�

c(n+ 1)−m
�2
(n+ 1)m

=
�

rns
(n+ 1)m−m

�2
(n+ 1)m

= (r2)n
s
(n+ 1)m

= Enc(m, r2).

4.4 The Damgård-Jurik Cryptosystem 39

Now, suppose that c is an encryption of an element m̂ chosen uniformly at
random from Zns . Then,

c′ =
�

c(n+ 1)−m
�2
(n+ 1)m

=
�

rns
(n+ 1)m̂−m

�2
(n+ 1)m

= r2ns

(n+ 1)2m̂−m

= Enc(2m̂−m, r2).

In either case, c′ is the encryption of a random element of Zns with randomness
chosen from QRn. Thus, AdvA = AdvB .

Based on this fact, we can demonstrate the security of the Damgård-Jurik
cryptosystem.

Proposition 4.4.5. The Damgård-Jurik hybrid cryptosystem satisfies IND-CPA
security under the composite-DDH and DCRA assumptions.

Proof. Consider the two pairs P1 = (gk, (hk)n
s
(n+ 1)m) and P2 = (gk, rns

(n+
1)m), where r is chosen uniformly at random from QRn. Suppose there is an
adversary A who has a non-negligible probability of distinguishing between
these two pairs. We would like to build an adversary B who can break the
composite-DDH assumption. The adversary B will operate as follows. On in-
put (n, g, ga, g b, y), it will pass the public key (n, g, ga) to A , get a message
m, send the ciphertext (g b, yns

(n+ 1)m), and return the output b. There are
thus two possibilities: either y = gab, or y is uniformly at random from QRn.
But this is exactly the difference between P1 and P2, and thus can be distin-
guished by A . Hence, under the composite-DDH assumption, P1 and P2 are
indistinguishable.

Let P3 be the pair (gk, rns
(n+ 1)m

′
), where m′ is a random element in Zns .

We claim now that pairs P2 and P3 are indistinguishable. This is an immediate
consequence of the fact that rns

(n+ 1)m is indistinguishable from rns
(n+ 1)m

′
,

by the DCRA and Lemma 4.4.4. Thus, P2 is indistinguishable from P3.
Finally, let P4 be the pair (gk, (hk)n

s
(n+ 1)m

′
). Pairs P3 and P4 are again in-

distinguishable, by the same argument as with pairs P1 and P2. Thus, P1 is indis-
tinguishable from P4. Since distinguishing these two pairs is precisely the task
faced by an ROR-CPA adversary, we can conclude that under the composite-
DDH and DCRA assumptions, no such adversary can exist. By Proposition 3.4.5,
the cryptosystem is thus IND-CPA-secure.

4.5 Conclusion 40

4.5 Conclusion

In this chapter, we have seen three important cryptosystems. All of these cryp-
tosystems share the important property of being additively homomorphic, that
is, they admit the computation of the sum of the plaintexts given only the cor-
responding ciphertexts. Additionally, all three satisfy IND-CPA security.

Table 4.1 compares the previously discussed cryptosystems in terms of the
assumptions upon which they depend. It should be noted that the Damgård-
Jurik cryptosystem can be modified [DJ03] to depend solely on the DCRA.

Name Assumptions

Elgamal DDH
Paillier DCRA
Damgård-Jurik Composite-DDH,DCRA

Table 4.1: Comparison of Cryptosystems

Chapter 5

Proofs of Knowledge

This chapter introduces the notion of proofs of knowledge, a technique whereby
one can prove knowledge of some witness to a predicate without revealing the
witness itself.

5.1 Motivation

It may seem paradoxical that one can prove the knowledge of something with-
out revealing any information. Quisquater, et al., give an amusing example
[QGAB89] to demonstrate the intuition behind why this is possible. The core
idea behind of their example is as follows. There are two parties, Alice and
Bob. Alice knows the magic word to open a door inside a cave. The cave is
shaped like a circle, with only one entrance, and a magic door in the middle.
Alice would like to prove to Bob that she knows the magic word, but she does
not want Bob to learn the magic word for himself. Thus, Bob cannot simply
follow Alice into the cave and listen to her open the door.

To solve this problem, they employ the following scheme. Alice goes into
the cave, and Bob waits outside. Alice enters the cave through a random path.
Once she is inside, Bob enters the cave, and shouts out to Alice the path he
wants her to return by. If he requested the same path by which she entered,
she returns by that path. Otherwise, she uses the magic word to return by the
other path. However, if she does not know the magic word, then there is only a
50% chance that she can return by the path Bob requested. If this experiment
is repeated several times, the chances that Alice can fool Bob each time become
tiny. Thus, Alice has demonstrated to Bob that she indeed knows the magic
word. Furthermore, she has not revealed any information about what that
word might be, as Bob did not immediately follow her into the cave.

41

5.2 Required Properties 42

5.2 Required Properties

Zero-knowledge proofs were first introduced by Goldwasser, Micali, and Rack-
off [GMR85]. A zero-knowledge proof must satisfy three properties.

Completeness Assuming that the statement is true, an honest prover will al-
ways convince an honest verifier.

Soundness Assuming that the statement is false, a cheating prover cannot con-
vince an honest verifier.

Zero-knowledge Assuming that the statement is true, an honest verifier learns
nothing else, except for this fact. That is, no knowledge is transferred
during the execution of the protocol, except for the proof itself.

When we say that a party is honest we mean that it is following the protocol
as written. A cheating party may deviate from the protocol in order to gain an
advantage over the other party.

5.3 Interactive Proof Systems

Before we present a formal definition of a zero-knowledge proof, we must in-
troduce a model of computation that allows for interacting parties.

Definition 5.3.1. An interactive proof system Π = (P ,V) is a protocol run
between two parties, P and V . Party P is called the prover, and party V the
verifier. Both parties are modeled by PPT machines. The proof system, on input
x , produces an output in {0,1} subject to the following restrictions.

1. Both parties receive input x .

2. The computation proceeds as a sequence of exchanged messages

m1, m2, m3, . . . ,

where each message mi satisfies |mi| ≤ |x |k, for some k ∈ N.

3. Each of the two parties is unaware of the internal state of the other,
including the randomness used at each stage of the conversation.

5.4 Formal Definition 43

The proof system Π decides (that is, it is “complete”) a language L if, for all
strings x ,

Pr[Π(x) = 1 | x ∈ L]≥ 1−
1

2|x |
,

and for all probabilistic Turing machines P ∗, which may run in exponential
time,

Pr[(P ∗,V)(x) = 1 | x /∈ L]≤ 1−
1

2|x |
,

(that is, it is “sound”).

Observe that the first two properties of zero-knowledge proof systems also
apply to any general interactive proof system. The third property is the distin-
guishing property for zero-knowledge proofs.

5.4 Formal Definition

The general form of zero-knowledge proof that we will use is the three-move
protocol. The structure of a three-move protocol is shown in Figure 5.4. We will
use such diagrams to show the sequence of events in an interactive protocol.
Execution proceeds downwards sequentially, with each party sending data via
arrows to the other.

Prover Verifier
commitment−−−−−−→

challenge
←−−−−
response
−−−−→

Figure 5.1: General form of three-move zero-knowledge protocols

Lemma 5.4.1 (Alternative definition of NP). Let Σ = {0,1}∗. For any language
L over alphabet Σ, it holds that L ∈ NP if and only if

L =
�

x ∈ Σ∗ | there exists a w ∈ Σ∗ such that |w| ≤ p(|x |) and 〈x , w〉 ∈ L
	

,

for some polynomial p.

5.4 Formal Definition 44

Remark 5.4.2. In the above lemma, the notation 〈x , w〉 refers to a string repre-
sentation of the pair (x , w).

By Lemma 5.4.1, we get an alternative formulation of the class NP. Let L
be a language in NP. Then, for each x ∈ L, there exists a set Wx such that Wx
is the set of “witnesses” for x . Thus, there is a polynomial-time computable
relation RL = {(x , w) | x ∈ L, w ∈ Wx}. We term RL an NP-relation for the
language L.

Definition 5.4.3. A three-move proof of knowledge for an NP-relation RL is an
interactive proof system (P ,V) satisfying the following properties. Both par-
ties receive a common input x ∈ L, and the prover P wishes to prove to the
verifier V that it knows a w such that (x , w) ∈ RL . A proof of knowledge must
have the following basic properties.

1. Completeness: For all (x , w) ∈ RL ,

Pr[(P (w),V)(x) = 1] = 1− ε(|x |),

where ε is a negligible function.

2. Special soundness: For all provers P ∗, there exists a PPT extractor X
such that given two accepting conversations (y, c, s) and (y, c′, s′) with
the same first move and different second moves, is able to extract the
witness w.

3. Honest-verifier zero-knowledge: There exists a simulator S such that

�

view(P)
	

x∈L ≈
�

S (x)
	

x∈L ,

where {view(P)}x∈L represents a sequence consisting of all data view-
able by P during the execution of the protocol for all inputs x .

Intuitively, soundness ensures that the provers actually knows a witness,
completeness ensures that the verifier must accept a valid proof, and zero-
knowledge ensures that the verifier cannot recover the witness.

It turns out that the class of languages that can be proved with three-move
protocols is quite large.

Theorem 5.4.4. If L ∈ NP, then there exists a three-move zero-knowledge proto-
col for L.

5.5 Basic Protocols 45

5.5 Basic Protocols

We provide several examples of proofs of knowledge, which will serve as build-
ing blocks for more complex protocols.

5.5.1 Knowledge of Discrete Logs

Suppose g is a generator of an order-q subgroup of Z∗p, for some prime p. The
verifier is given input (p, q, g, h), and the prover wishes to prove that it knows
w ∈ Zq such that h = gw . Schnorr [Sch90] presents the following protocol to
accomplish this task.

Prover Verifier
r ∈U Zq

y ← g r y
−→

c←− c ∈U Zq

s← r +wc
s−→ gs ?

= yhc

Figure 5.2: The Schnorr proof of knowledge of discrete logs.

Proposition 5.5.1. The Schnorr protocol satisfies completeness, special sound-
ness, and honest-verifier zero-knowledge.

Proof. To show completeness, observe that gs = g r+wc = yhc . Thus, if both the
prover and verifier are honest, the verifier will be convinced with probability 1.
To show special soundness, we construct an extractor that operates on two ac-
cepting conversations (y, c, s) and (y, c′, s′) from the prover that have the same
first move but different second moves. Given these two conversations, observe
that gs = yhc and gs′ = yhc′ , so it follows that x = (s − s′)/(c − c′), which is
the desired witness. Finally, to show honest-verifier zero-knowledge, we con-
struct a simulator that on input (g, p, q, h), chooses c, s ∈U Zq, and outputs
(gsh−c , c, s).

5.5.2 Equality of Discrete Logs

Suppose again that g is a generator of an order-q subgroup of Z∗p, and wishes to
prove that it knows α ∈ Zq such that x = gα and y = hα. Chaum and Pedersen
[CP93] give a protocol to prove the equality of two discrete logarithms.

Proposition 5.5.2. The Chaum-Pedersen protocol satisfies completeness, special
soundness, and honest-verifier zero-knowledge.

5.6 Composition of Proofs 46

Prover Verifier
w ∈U Zq

(a, b)← (gw , hw)
a,b
−→

c←− c ∈U Zq

r ← w+αc
r−→ g r ?

= ax c

hr ?
= b y c

Figure 5.3: The Chaum-Pedersen proof of equality of discrete logs

The proof is quite similar to that of Proposition 5.2, and it thus omitted.

5.6 Composition of Proofs

Feige and Shamir [FS90] introduced the idea of witness indistinguishability.

Definition 5.6.1. A proof of knowledge is witness indistinguishable if conversa-
tions generated with the same x but with different witnesses w have indistin-
guishable distributions.

Cramer, et al., [CDS94] provide a method for deriving the OR-composition
of proofs of knowledge.

Theorem 5.6.2. Let Π be a three-round, public coin, honest-verifier proof of
knowledge for an NP-relation RL , satisfying special soundness. Then, for any inte-
gers n, d with n ≥ d, there exists a three-round, public coin, honest-verifier proof
of knowledge in which the prover shows that it knows d out of n witnesses for
elements in RL , without revealing which d witnesses it knows.

Proof. Suppose Π = (P ,V). Recall that since Π has the honest-verifier zero-
knowledge property, there exists a simulator S that presents a conversation
indistinguishable from the view of V during a real execution of the protocol.
We now proceed to construct a new protocol Π′ = (P ′,V ′) as follows.

1. For each i for which the prover does not know a witness wi for statement
x i , the prover runs the simulator S to produce a conversation (yi , ci , si).
For each i for which the prover does know a witness, it runsP to receive a
commitment yi . The prover then sends yi , for i = 1, . . . , n, to the verifier.

2. The verifier chooses a t-bit string s at random and sends it to the prover.

5.6 Composition of Proofs 47

3. The prover chooses “shares” c1, . . . , cn such that c1⊕· · ·⊕ cn = s. For each
i, if the prover knows a witness wi , it runs P on ci to get si . Otherwise,
it sets si to be the response of the ith conversation generated by the
simulator. It then sends s1, . . . , sn and c1, . . . , cn to the verifier.

4. The verifier checks that all conversations (yi , ci , si) are accepted by V ,
that s = c1⊕ · · · ⊕ cn, and accepts if and only if the checks are satisfied.

It remains to show that the above protocol satisfies completeness, special sound-
ness, and witness indistinguishability. Completeness trivially holds, since the
simulator S must produce accepting conversations. To show soundness, sup-
pose we have two accepting conversations ({yi}n1, s, {si}n1) and ({yi}n1, s′, {s′i}

n
1)

with the same first move and different second moves. Suppose further that
the challenges s and s′ give rise to shares c1, . . . , cn and c′1, . . . , c′n, respectively.
Then, for each set of indices such that the prover knows witness for elements
in the set, there must exist an i such that ci 6= c′i . Since Π satisfies special
soundness, we can then extract a witness wi from P . Finally, to show witness
indistinguishability, we must show that the distribution of the conversation is
independent of which witnesses the prover knows. Since Π is honest-verifier
zero-knowledge, we have that the distribution of each yi is dependent only
on x i , and is independent of the known witnesses. Next, the construction
of the challenge shares ensures randomness. Finally, the honest-verifier zero-
knowledge property again implies that each si is dependent only on x i , yi , and
ci , and so is independent of the known witnesses.

Figure 5.4 illustrates the construction given in the previous proof, in the
case where the prover wishes to prove the disjunction of two predicates.

Prover Verifier
select ρ, d ′, s′ at random

a← P1(ρ, x)

a′←S (d ′, s′)
a,a′
−→

c←− c← V1(1λ)
compute d such that c = d ⊕ d ′

s = P2(ρ, x , a, d)
s,s′
−→ V2(a, d, s)

?
= 1

V ′2(a
′, d ′, s′)

?
= 1

d ⊕ d ′
?
= c

Figure 5.4: Proof of the disjunction of two predicates

5.7 Non-interactive Proofs 48

5.7 Non-interactive Proofs

Using the Fiat-Shamir heuristic [FS86], we can produce non-interactive ver-
sions of any three-round zero-knowledge protocol. Before we introduce the
procedure, we first define a basic primitive that is used in its construction.

Definition 5.7.1. A cryptographic hash function (we shall refer to these simply
as “hash functions”) is a function H : {0,1}∗ −→ Zq, for some integer q, with
the following properties.

1. It is computationally difficult to find strings x and y such that x 6= y but
H(x) = H(y). That is, H is collision-resistant.

2. Given H(x), for some string x , it is difficult to find x . That is, H is hard
to invert.

3. The function H should be computable in polynomial time with respect to
|x |. That is, H is easy to compute.

Remark 5.7.2. A word on notation: if H is a hash function, and x is a group ele-
ment, we denote by H(x) the application of H to some unique binary represen-
tation of x . If x1, . . . , xn are group elements, we denote by H(x1, . . . , xn) the ap-
plication of H to the concatenation of the binary representations of x1, . . . , xn.

Several candidate hash functions have been proposed in the literature and
used in practice. As of this writing, the two most popular hash functions used
in practice are SHA-1 and MD5. However, both functions have recently been
shown to contain security flaws. Whether or not there exist functions that truly
satisfy the required properties is currently a matter of speculation. Nonetheless,
we take as an operating assumption that there does exist such a function.

Given a hash function H, we can construct a non-interactive version of
any three-move zero-knowledge protocol. Suppose the prover wishes to prove
the validity of statement x . It first generates a commitment y , followed by
a challenge c = H(y, x). It then computes a response s based on y and c.
The triple (y, c, s) serves as a static proof of the validity of x . The intuition
here is that the hash function ensures that the challenge is computed after the
commitment has already been chosen. The security of this method is based on
the fact that it is difficult to find collisions for h, so an attacker who wishes to
generate its own challenge with a different commitment would need to find
y ′ 6= y such that H(y, x) = H(y ′, x).

Example 5.7.3. We can construct a non-interactive version of Schnorr’s proof
as follows. The prover would set its commitment to be y = g t , the challenge

5.8 The Random Oracle Model 49

as c = H(h, g, y), and the response as s = t+ cw. It would then send (y, c, s) as
its proof. The verifier then checks that c = H(g, h, gsh−c). ◊

5.8 The Random Oracle Model

When we construct a cryptographic scheme using a hash function, the proof
of security often requires that we use a special model. This model, called the
random oracle model, assumes that the cryptographic hash function behaves as
a random oracle. That is, a deterministic function whose output is uniformly
distributed in its range.

In a proof based on the random oracle model, it is assumed that the envi-
ronment is controlled by a simulator, and that the simulator also has control
over every random oracle called by each player. Suppose, for instance, that the
players in the protocol all use a hash function H. When players query H, the
simulator is then responsible for replying with a suitable value for H applied to
the input.

Observe that it is possible to simulate a deterministic random oracle in
probabilistic polynomial time. The simulator will behave as follows. Upon
receiving a query for a string (say, s1), the simulator will sample a random
element from the range of H (say, v1), and return v1 to the caller. It will then
store the pair (s1, v1) in a table. Upon receiving a second query for a different
string s2, it will again sample a random value v2, return v2, and store (s2, v2)
in the table, sorted by string. As each new string is queried, the simulator will
search the table for the string. If the string is found, it will return the value
that it already sampled; otherwise, it will sample a new value. Since the table
is sorted, the look-up time is O(log n), where n is the size of the table. Thus,
the random oracle is perfectly simulated in polynomial time.

It is unknown whether currently used cryptographic hash functions have
this property. Thus, it cannot be said that the random oracle model provides
an accurate representation of the real world. However, several existing hash
functions appear to provide near-uniform behavior, and so the random oracle
model remains a good heuristic to argue security.

5.9 Proofs About Encryptions

In this section, we provide several examples of proofs of knowledge for various
properties relating to the cryptosystems we have previously discussed.

5.9 Proofs About Encryptions 50

5.9.1 Elgamal Proofs

As our first example of technique in §5.6, we present a protocol that will allow
a prover to prove that a given homomorphic Elgamal ciphertext (g r , hr gm)
encrypts either 0 or 1. We have already done most of the work to develop this
protocol. To prove that an Elgamal ciphertext (G, H) encrypts a value m, we
must show that (G, H) = (g r , hr gm), for some r. That is, we must show that
logg G = logh(H/gm). This is exactly the Chaum-Pedersen protocol discussed
earlier. Thus, we construct the Elgamal proof of encryption of 0 or 1 as the
composition of two executions of the Chaum-Pedersen protocol, combined with
the technique of §5.6. The combined protocol is shown in Figure 5.5.

Prover Verifier
t0, s1, c1 ∈U [0, q]

y0 = g t0 , z0 = ht0
y0,z0,y1,z1−−−−−→

y1 = gs1 G−c1

z1 = hs1(H/ f)−c1

c←− c ∈U [0, q)

c0 = c− c1
s0,s1,c0,c1−−−−−→ gs0

?
= y0Gc0

s0 = t0+ c0r hs0
?
= z0H c0

gs1
?
= y1Gc1

hs1
?
= z1(H/g)c1

c
?
= c0+ c1

Figure 5.5: Proof that an Elgamal ciphertext encrypts 0 or 1

5.9.2 Paillier Proofs

Damgård and Jurik construct some zero-knowledge proofs for the Paillier cryp-
tosystem. As any element in Z∗

ns+1 is a valid Paillier ciphertext, there is no need
for a proof of well-formedness. Thus, we present proofs for the encryption of 0
and the combined encryption of either 0 or 1. Figure 5.6 shows the proof that
a Paillier ciphertext encrypts the value 0.

Proposition 5.9.1. The protocol in Figure 5.6 satisfies completeness, special sound-
ness, and honest-verifier zero-knowledge.

Proof. To show completeness, observe that since u ∈ Z∗
ns+1 , it follows that u ⊥

ns+1, and so u⊥ n. Similarly, as v, z ∈ Z∗n, we have that v ⊥ n and z ⊥ n.

5.9 Proofs About Encryptions 51

Prover Verifier
r ∈U Z∗n

a← Enc(0, r)
a−→
c←− c ∈U [2len(n)/2]

z← rvc z−→ u⊥ n
a ⊥ n
z ⊥ n

Enc(0, z)
?
= auc

Figure 5.6: Proof that a Paillier ciphertext encrypts 0

To show soundness, suppose we have two accepting conversations, (a, c, z)
and (a, c′, z′). Then, Enc(0, z) = zns

= (rvc)n
s
= auc and Enc(0, z′) = auc′ .

Additionally,

Enc(0, z/z′) = (z/z′)n
s

=
�

rvc

rvc′

�ns

= (vns
)c−c′

= uc−c′ .

Now, since 2len(n)/2 ⊥ n, it follows that (c−′) ⊥ ns. So, using the extended
Euclidean algorithm, we can find α,β such that αns + β(c − c′) = 1. Next, let
ū= u mod n and v = ūα(z/z′)β . Notice that uns

= Enc(0, ū). Thus,

Enc(0, v) =
�

ūα(z/z′)β
�ns

= (ūns
)α(z/z′)βns

= Enc(0, ū)α Enc(0, z/z′)β

= (uns
)αuβ(c−c′)

= uαns+β(c−c′)

= u.

That is, v was the correct randomness for the ciphertext u, completing the
extraction.

Finally, we show honest-verifier zero-knowledge by performing a simulation
as follows. First, we select z ∈U Z∗n. Then, we select c ∈U [2len(n)/2]. Finally, we
compute a← Enc(0, z)u−c and output the conversation (a, c, z).

5.9 Proofs About Encryptions 52

Using the technique of §5.6, we can construct a protocol that allows the
prover to prove that a ciphertext encrypts either 0 or 1. In this construction we
make use of the simulator S described in the proof of Proposition 5.9.1.

Prover Verifier
r1 ∈U Z∗n

(a2, e2, z2)←S (n, u2)

a1← Enc(0, r1)
a1,a2−−→ s ∈U [2len(n)/2]

s←−
e1← s− e2 mod 2len(n)/2

z1← r1ve1
1

e1,z1,e2,z2−−−−−→ s
?
= e1+ e2 mod 2len(n)/2

Enc(0, z1)
?
= a1ue1

1

Enc(0, z2)
?
= a2ue2

2
u1 ⊥ n, u2 ⊥ n
a1 ⊥ n, a2 ⊥ n
z1 ⊥ n, z2 ⊥ n

Figure 5.7: Proof that a Paillier ciphertext encrypts 0 or 1

Proposition 5.9.2. The protocol in Figure 5.7 satisfies completeness, special sound-
ness, and honest-verifier zero-knowledge.

Proof. The result follows immediately from Proposition 5.9.1 and Theorem
5.6.2.

5.9.3 Damgård-Jurik Proofs

As above, we can construct proofs about Damgård-Jurik ciphertexts as well.
However, we need to make a modification to the cryptosystem before this will
work. Damgård and Jurik present a modification of their cryptosystem that
allows values to be squared before making proofs, to ensure that elements are
in QRn. The modified cryptosystem is shown in Figure 5.8.

We can now use the standard methods to create a proof that a Damgård-
Jurik ciphertext encrypts one of a list of values. The reader is referred to
[Jur03] for proofs of the correctness and security of these protocols.

5.10 Conclusion 53

Key generation This is identical to the original cryptosys-
tem.

Encryption Bob selects a message m ∈ Z+, and r ∈U ZN ,
and b0, b1 ∈U {0,1}. He then computes

Enc±s (m, r, b0, b1) = ((−1)b0 g r , (−1)b1(hr)n
s
(n+ 1)m)

and sends c to Alice.

Decryption Alice receives a ciphertext (G, H). She only
decrypts (G, H) if both (G | n) = 1 and (H | n) = 1.
She computes d = Gα as in the original cryptosystem,
and computes

H ′ = H2d−2ns

= (n+ 1)2m.

She recovers the message by computing

m= Ls(H
′)/2.

Figure 5.8: The modified Damgård-Jurik cryptosystem

5.10 Conclusion

This chapter has seen the introduction of a crucial cryptographic primitive: the
proof of knowledge. This primitive is essential in building cryptographic sys-
tems in which there are multiple parties mutually distrustful of the information
they send and receive. It allows parties to keep secrets, while at the same time
ensuring to others that they actually possess these secrets. We have seen how
various properties of encryption schemes can be proved using zero-knowledge
proofs.

5.10 Conclusion 54

Prover Verifier
r ′ ∈U {0, . . . , 2|N |+2k2}

c′← (G′, H ′) = Enc±s (m
′, r ′, 0, 0)

c′−→
e←− e ∈U {0, . . . , 2k2 − 1}

r̂ ← r ′+ er

m̂← m′+ em mod ns r̂,m̂
−→

G ⊥ n, G′ ⊥ n
H ⊥ n, H ′ ⊥ n

(G | n) ?
= 1, (G′ | n) ?

= 1

(H | n) ?
= 1, (H ′ | n) ?

= 1

Enc±s (2m̂, 2r̂, 0, 0)
?
= (c′)2c2e

Figure 5.9: Proof that a Damgård-Jurik ciphertext is well-formed. Here, we
assume 2k2 is less than the smallest prime factor of n.

Prover Verifier
r ′ ∈U {0, . . . , 2|N |+2k2}

c′← (G′, H ′) = Enc±s (m
′, r ′, 0, 0)

c′−→
e←− e ∈U {0, . . . , 2k2 − 1}

r̂ ← r ′+ er

m̂← m′+ em mod ns r̂,m̂
−→

G ⊥ n, G′ ⊥ n
H ⊥ n, H ′ ⊥ n

(G | n) ?
= 1, (G′ | n) ?

= 1

(H | n) ?
= 1, (H ′ | n) ?

= 1

Enc±s (2em, 2r̂, 0, 0)
?
= (c′)2c2e

Figure 5.10: Proof that a Damgård-Jurik ciphertext encrypts m

Chapter 6

Distribution of Trust

A key decision to be made in the construction of any secure system is where to
place trust.

6.1 Motivation

Consider the classical example of a government preparing for nuclear war. A
missile is aimed at the enemy country, and it can only be launched by the in-
sertion of a special key. However, it would be devastating for the key to fall
into the wrong hands, so no single person is trusted with it. Instead, several
officials are each given separate keys, and the missile launch depends on the
successful insertion of all of them. Thus, no single person can take it into his
or her own hands to launch the missile. There remains a problem, however.
Suppose an enemy spy kidnaps one of the officials. Then, the ability to launch
the missile has effectively been destroyed, as one of the keys is now missing. To
avoid this calamity, we require only that a certain threshold of keys be present.
For example, if there are a total of ten keys, we might estimate our enemy’s ca-
pacity to kidnap our officials to be limited to two individuals, and only require
the presence of eight keys.

The placement of trust is a recurring concept in computer security. As an
example, consider the goal of sending authenticated email. There are two main
standards for this task: OpenPGP [CDFT98] and S/MIME [DHR+98]. Both of
these standards allow the authentication of email using public-key cryptogra-
phy, but each relies on a different method of trust. OpenPGP is based on a
web of trust, where each participant has a public keypair. If Alice has a copy of
Bob’s public key, and she has independent verification that this is actually Bob’s
key, she can use her secret key to sign it. Thus, if Dave obtains a copy of Bob’s

55

6.2 Shamir’s Scheme 56

public key (as signed by Alice), he can trust that the key is authentic, provided
that he trusts Alice. In this way a web is constructed, where every participant
has a list of other participants that he or she trusts, and these trusts are public
information.

This is in contrast to the trust model used by S/MIME. In S/MIME, each
participant is issued a certificate by a certification authority (CA). The certificate
is signed by the CA, and thus anyone who has a copy of the CA’s public key
can verify signatures produced by it. Thus, if Alice knows the CA’s public key,
and Bob’s certificate is signed by the CA, Alice can verify that Bob’s email is
valid. Notice that this scheme assumes that Alice trusts the CA. If the CA were
malicious, an impostor could claim to be Bob, get a signed certificate from the
CA, and impersonate Bob. In practice, CAs are normally large companies who
charge for their services, and require identification before issuing certificates.

6.2 Shamir’s Scheme

Often, it is desirable to share a secret among several parties, such that no one
party can recover the secret alone. Schemes that accomplish this task are called
secret-sharing schemes. Shamir [Sha79] gives a polynomial interpolation-based
scheme for secret-sharing.

Definition 6.2.1. A (k, n)-threshold scheme is a scheme in which a piece of data
D is “divided” into n shares D1, . . . , Dn such that

1. Knowledge of at least k shares makes D easily computable.

2. Knowledge of fewer than k shares leaves D impossible to determine.

Suppose we wish to share a secret D ∈ Z among n trustees. We begin by
choosing a prime number p such that p > D and p > n. Recall, by Theorem
2.4.18, that we can perform polynomial interpolation in the field Fp. That is, if
we have k points (x1, y1), . . . , (xk, yk), there is exactly one polynomial q(X) of
degree k− 1 such that q(x i) = yi , for all i = 1, . . . , k.

With this in mind, the dealer chooses a random polynomial q(X) ∈ Fp[X] of
degree k− 1, setting q(0) = D. That is, it chooses coefficients a1, . . . , ak−1 ∈U
Fp, and sets a0 = D. The n shares are then computed and distributed as Di =
q(i), for each i = 1, . . . , n. When the trustees wish to recover the secret, they
pool k of their shares together, use interpolation to recover the complete k− 1
degree polynomial, and evaluate it at 0.

Proposition 6.2.2. In a (k, n)-threshold scheme, an adversary corrupting fewer
than k trustees cannot recover the secret.

6.3 The Communication Model 57

Proof. Since the polynomial is of degree k − 1, an adversary is required to
obtain k points on the polynomial to apply interpolation. If the adversary pos-
sesses fewer than k shares, the polynomial remains completely undetermined.
Furthermore, q(0) is independent from the other shares, so without using in-
terpolation, the secret cannot be recovered.

Based on the previous discussion of Shamir’s scheme, we can isolate several
concerns.

1. There is trust in a single dealer. In applications such as elections, where
all parties may be mutually distrustful of each other, it may not be possi-
ble to find a party whom everyone trusts. The private information is thus
required to be generated jointly by all players, in such a way that no one
party is aware of the secrets of any other party.

2. There is no way to catch misbehaving players. A player who submits
invalid shares in the final stage can completely ruin the procedure and
prevent the interpolation from being carried out correctly. There should
be some way to verify that each submitted share is actually correct.

3. It may be desirable to perform computations with the secret without ac-
tually revealing it to any one party. In the above setting, the secret in-
formation is eventually revealed to one party, who then presumably uses
it for some computational task. In many settings, such as elections, it is
definitely not acceptable for any party to have access to the secret (a de-
cryption key that would reveal each voter’s ballot). In this case, we would
like to perform the necessary computations “in the dark,” and then reveal
only the outcome.

In the schemes that follow, we will address these concerns to varying de-
grees. Concern 1 can be solved by making various efficiency trade-offs (namely
in communication complexity). Concern 2 can be solved using verifiable secret
sharing and zero-knowledge proofs. Concern 3 is a definite requirement, and
will be addressed by all of our schemes.

6.3 The Communication Model

Rather than allow parties to communicate over private channels, we employ
a bulletin board model. This model, introduced by Benaloh [Ben87], ensures
that all communication is performed in the open.

6.4 Verifiable Secret Sharing 58

User 1

To: n
Data: m

To: n
Data: m

User i

User n

To: n
Data: m

. . .

User 1

User 2

User n

. . .

Figure 6.1: The bulletin board model of communication. User 1 wishes to send
a message m to user n. Note that user i can also read the message.

Definition 6.3.1. A bulletin board is a public memory shared by multiple users.
The bulletin board is divided into areas, one for each user. Every user has
read access to every area on the bulletin board, and append access to its own.
We define the transcript of the bulletin board to be the entire contents of the
bulletin board.

Observe that no user has delete access to any area of the bulletin board.
We make one final assumption about the communication model. This is

that every user who posts to the bulletin board is authenticated. That is, we
never have to be concerned that a message is posted in a user’s area that did
not come from that user.

6.4 Verifiable Secret Sharing

To address the issue of cheating parties, we use secret-sharing methods known
as verifiable secret sharing (VSS).

6.4.1 The Model

We suppose the bulletin board model of communication, with n users. Addi-
tionally, we assume that there is one adversary, who is not one of the n users.
We assume that the adversary can corrupt up to t out of the n parties, for
t < n/2, at the start of the communication. The adversary is static, that is, it
cannot change which parties it has corrupted at any point during the execution.

6.4 Verifiable Secret Sharing 59

Furthermore, we assume that the corrupted parties are completely under the
adversary’s control (that need not follow the written protocol).

We provide the following definition of security for verifiable secret shar-
ing. We claim that a VSS protocol is secure if, given a static adversary who has
corrupted t players at the beginning of the protocol, it is computationally in-
feasible for the adversary to determine the shared secret, given only the shares
of the t compromised players and the public transcript of the bulletin board.
Specifically, there exists a simulator that, given a shared secret, produces a bul-
letin board transcript (for all areas other than the t compromised players) that
is indistinguishable from a bulletin board transcript that is the result of a proper
execution of the protocol.

There is a weakness in this model, however. We are only assuming the ex-
istence of a static adversary. That is, the adversary is only permitted to corrupt
players at the beginning of the game. We have ignored the possibility of an ac-
tive adversary, who may change the corrupted players as the game progresses.
The static model may therefore be unrealistic. Nonetheless, for simplicity, this
is the model we assume.

6.4.2 Feldman’s VSS

A simple VSS scheme is that of Feldman [Fel87], shown in Figure 6.3. As
this scheme can detect cheating parties, it will become our basic primitive for
building more complex secret sharing protocols.

Proposition 6.4.1. Let A be an adversary who has compromised t or fewer
players in Feldman’s VSS. Then,A cannot learn any information about σ beyond
what can be derived from gσ.

Proof. We prove this claim by a simulation argument. That is, we construct a
simulator S that presents toA a view of the protocol that is indistinguishable
from a real-world execution of the protocol. Specifically, given a secret σ, and
the compromised shares s1, . . . , st of t parties, S must generate verification
values A1, . . . , At such that

gs
i =

t
∏

k=0

(Ak)
ik

.

As each Ak should equal gak , for k = 0, . . . , t, we need to find values for each ak.
Let f = (f (0), . . . , f (1)), and let a = (a0, . . . , at). Let A be the (t + 1)× (t + 1)
Vandermonde matrix, that is, Aik = ik. It follows from linear algebra that
this matrix is invertible. Let A−1 = (λki) be the inverse of A. Then, since

6.5 Distributed Key Generation 60

1. The dealer generates a random polynomial f (X) =
σ+a1X+· · ·+atX

t ∈ Zq[X]. It sends si = f (i) to each
party Pi , and broadcasts Ak = gak , for k = 0, . . . , t.

2. Each party Pi verifies the equality

gsi =
t
∏

k=0

(Ak)
ik

.

If the verification fails, then Pi broadcasts a complaint
against the dealer.

3. For each complaining party Pi , the dealer reveals si . If
any of the revealed shares fails the verification, then
the dealer is disqualified.

4. Before reconstructing the secret, the above equality is
used again to detect invalid shares submitted by the
players.

Figure 6.2: Feldman’s Verifiable Secret Sharing

f (i) = σ+a1i+ · · ·+at i
t , for i = 0, . . . , t, it follows that f = Aa, or a = A−1 f .

Thus, we can define each Ak as

Ak = gak

=
t
∏

i=0

�

g f (i)�λki .

This produces a distribution on all public values that is identical to that in the
real execution of the protocol, so the simulation is complete.

6.5 Distributed Key Generation

Consider now the problem of distributing secret decryption keys, so that no
one player has access to the key, and a threshold number of players must be
present to use it. We define the following security requirements for distributed
key generation protocols.

Correctness We define correctness in terms of three properties.

6.5 Distributed Key Generation 61

1. All subsets of t + 1 shares given by honest players define the same
unique secret key.

2. At the end of the protocol, all honest players have the same public
key.

3. The secret key is uniformly distributed in the secret key space, and
the public key is uniformly distributed in the public key space.

Secrecy For every PPT A , that corrupts up to t parties, there exists a PPT
simulator S that, on input y , produces an output distribution that is
indistinguishable fromA ’s view of a real-world execution of the protocol
that ends with public key y .

We would ideally like to construct such a scheme for all of the homomorphic
cryptosystems we have discussed. However, this is not necessarily an easy task.
We focus on the discrete log-based encryption schemes, notably Elgamal.

6.5.1 Pedersen’s DKG Protocol

The first attempt at a secure distributed key generation protocol for discrete
log keys was made by Pedersen [Ped91], shown in Figure 6.3. The protocol is
based on several concurrent executions of Feldman’s VSS protocol.

The protocol appears secure, but Gennaro, et al. [GJKR99], describe an at-
tack that allows an adversary to influence the distribution of the shared secret.
Their attack proceeds as follows. Suppose the adversary has compromised two
parties, P1 and P2. Furthermore, suppose it wishes to bias the distribution of
the public key so that it is more likely to have a least significant bit of 0. At the
end of step 1, the adversary will compute α=

∏n
i=1 Ai0 and β =

∏n
i=2 Ai0. That

is, it computes the value of the public key both with and without the participa-
tion of player P1. If the least significant bit of α is 0, then the adversary will
do nothing. Otherwise, it will have player P2 broadcast a complaint against P1,
forcing its disqualification. In this case, the public key will be set to the value
β . Since both α and β have least significant bits of 0 with probability 1/2, the
adversary can influence the outcome of the least significant bit of the public
key with probability 3/4. Clearly, the fault in this scheme is that is allows the
adversary to have some influence over the set Q.

6.5.2 Public DKG

Fouque and Stern [FS01a] devise a simple distributed key generation protocol
that eliminates the need for private channels. Furthermore, their scheme is

6.5 Distributed Key Generation 62

1. Each party Pi generates a random polynomial fi(X) =
ai0+ai1X+· · ·+ai tX

t ∈ Zq. It sends si j = fi(j) to each
party Pj , and broadcasts Aik = gaik , for k = 0, . . . , t.

2. Each party Pj verifies the equality

gsi j =
t
∏

k=0

(Aik)
jk

,

for each i = 1, . . . , n. If the verification fails for any i,
then Pj broadcasts a complaint against player Pi .

3. For each complaining party Pj , player Pi reveals si j .
If any of the shares fails the verification, then Pi is
disqualified. Define the set Q to be the set of all non-
disqualified players.

4. The public key is computed as y =
∏

i∈Q Ai0. The
public verification values are Ak =

∏

i∈Q Aik, for k =
1, . . . , t. The secret share of player Pj is x j =

∑

i∈Q si j ,
and the secret shared value is x =

∑

i∈Q ai0 (this
value is not actually computed).

Figure 6.3: Pedersen’s Distributed Key Generation

invulnerable to the attack previously described on Pedersen’s scheme, as the
adversary cannot make any decisions about which players are disqualified. Ob-
serve that the above protocol relies on a non-interactive proof of knowledge.
Such a “proof of fairness”, showing that a Paillier ciphertext encrypts the same
thing as a committed value, can be found in [FS01a].

Proposition 6.5.1. Assuming the DCRA, the Fouque-Stern DKG is secure against
static adversaries in the random oracle model.

Proof. Let A be a static adversary that has compromised t players. Without
loss of generality, suppose that the t compromised players are P1, . . . , Pt . We
describe a simulator S that, on input y ∈ 〈g〉, produces bulletin board values
for the uncompromised players Pt+1, . . . , P`. Specifically, S must produce, for
each i = t + 1, . . . ,`, values (gi , ni); Aik, for k = 0, . . . , t; yi j , for j = 1, . . . ,`;
and (ei j , wi j , zi j), for j = 1, . . . ,`.

6.5 Distributed Key Generation 63

1. Each player Pi publishes a Paillier keypair (gi , ni),
and stores the secret key λ(ni).

2. Player Pi generates a random si0 and selects a random
polynomial fi(X) = si0 + ai1X+ · · ·+ ai tX

t ∈U Zq[X].
It then publishes Aik = gaik , for each k = 0, . . . , t,
as well as yi j = gsi j and Yi j = g

si j

j uni
i j , followed by a

proof (ei j , wi j , zi j), where si j = fi(j).

3. Player Pi verifies, for each j = 1, . . . ,`, the equality

t
∏

k=0

Ajk

ik = g fi(j).

Additionally, Pi checks that g fi(j) = yi j , verifies the
proofs (ei j , wi j , zi j), and checks that yq

ik = 1. If
any check does not pass, Pi broadcasts a complaint
against Pj .

4. The set Q is formed from the players who have par-
ticipated correctly. All others are disqualified.

5. Player Pj decrypts Yi j to get si j , for each i = 1, . . . ,`.
For each i ∈ Q, it stores si j , and computes the public
key as y =

∏

i∈Q Ai0. The secret share of Pj is equal
to
∑

i∈Q si j = f (j), and the secret key is s =
∑

i∈Q ai0.

Figure 6.4: Fouque-Stern Distributed Key Generation

For i = t + 1, . . . ,`− 1, the simulator will choose a Paillier keypair (gi , ni)
at random. Then, it will choose aik ∈U Zq, for k = 0, . . . , t, and set fi(X) =
∑t

k=0 aikXk. Next, it will set Aik = gaik , for k = 0, . . . , t. Finally, it will set, for

j = 1, . . . ,`, both yi j = g fi(j) and Yi j = g fi(j)
j u

n j

i j , with ui j ∈U Z∗n j
.

For player P`, the simulator will do the following. Since the desired gener-
ated key is y =

∏

i∈Q Ai0, the simulator will set

A`0 = y
∏

i∈Q\{P`}

(Ai0)
−1.

Next, it will choose f`(j) ∈U Zq, for j = 1, . . . , t, and set y`k = g f`(j). It will

6.6 Threshold Homomorphic Cryptosystems 64

then interpolate to get yi j = g f`(j), for j = t+1, . . . ,`. Finally, it will choose s` j

and u` j at random, and set Y` j = g
s` j

j un`
` j .

For the zero-knowledge proofs, S will set

H(g, G, y, Y, gz y−e, GzwN Y−e) = e.

Observe that the distributions of the values generated by S are indistin-
guishable from the values generated by a real execution of the protocol.

6.6 Threshold Homomorphic Cryptosystems

Based on verifiable secret sharing, we can construct distributed threshold-based
versions of the cryptosystems described previously.

Definition 6.6.1. A threshold cryptosystem is a 9-tuple

(M , C , K , R, S,Gen, Enc,Dec, Com),

such that

1. M is the message space.

2. C is the ciphertext space.

3. K is the key space.

4. R is the randomness space.

5. S is the share space.

6. Gen: N×N×N×R−→ K×P (K)×P (K) is a key generation algorithm. It
takes as input a security parameter, the number of players, the threshold,
and randomness. It produces a public key, a list of private keys, and a list
of verification keys.

7. Enc: M × K × R−→ C is an encryption algorithm.

8. Dec: C×K −→ S is a share decryption algorithm. It takes as input a public
key, a private key, and a ciphertext. It produces a decryption share.

9. Com: C × P (S) −→ M is a combining algorithm. It takes as input a
ciphertext, a list of decryption shares, and produces a plaintext.

Fouque, et al., propose of definition of security [FPS01] for homomorphic
threshold encryption schemes. We will refer to this definition as indistinguisha-
bility under distributed chosen plaintext attacks (IND-DCPA). It is a natural ex-
tension of the IND-CPA definition for non-distributed encryption. The game is
shown in Figure 6.5.

6.6 Threshold Homomorphic Cryptosystems 65

GameA ,C
IND-DCPA(1

λ) Random variables
(kp, {σi}`1, {vi}`1)← Gen(1λ,`, t;ρ) ρ← R
(S, aux)←A1, such that |S|= t, S ⊂ {1, . . . ,`}
(m0, m1, aux′)←A D2 ({σi}i∈S , kp, aux)
c← Enckp

(mb; r) b← {0, 1}, r ← R
b∗←A D3 (c, aux′)
if b = b∗ then return 1
else return 0

Figure 6.5: The IND-DCPA game

In this game, the D oracle is a decryption oracle, which on input m, returns
` shares of the decryption of Enckp

(m). One should also be aware that the
admission of a decryption oracle to the adversary does not transform this into
a chosen ciphertext attack. Instead, the adversary is only permitted to decrypt
ciphertexts of chosen plaintexts. Observe that IND-DCPA is equivalent to IND-
CPA in the case when `= 1 and t = 0.

6.6.1 Threshold Elgamal

Figure 6.6 illustrates a threshold Elgamal scheme with a trusted dealer.
We first show that the threshold Elgamal scheme actually defines a proper

threshold encryption scheme. That is, assuming all players have followed the
protocol, an encrypted message can be recovered.

Proposition 6.6.2. The threshold Elgamal cryptosystem is correct.

Proof. Let S be a subset of t+1 shares. Suppose M is a message, and c = (G, H)
is a ciphertext encrypting M . Then, the tallier can compute

∏

j∈S

Gλ j x j = G
∑

j∈S λ j x j

= GP(0).

Now,

H/GP(0) =
hr gM

(g r)P(0)

= gM .

The tallier can then use an efficient algorithm to recover M from gM .

6.6 Threshold Homomorphic Cryptosystems 66

Parameters Safe prime p = 2q+ 1, generator g of q-order
subgroup of Z∗p, set of trustees T with |T |= n, thresh-
old t.

Dealing The dealer generates an Elgamal keypair (h, x),
and publishes h. Then, it chooses a1, . . . , at−1 ∈U Zq.
It forms the polynomial P(X) = x+a1X+a2X2+ · · ·+
at−1Xt−1, and sends x i = P(i) to trustee i. Finally, it
publishes h to the bulletin board. The verification key
vi of player Pi is then published as g vi .

Encryption To encrypt a message, a party retrieves h
from the bulletin board, and encrypts a ciphertext as
(g r , hr gm), where r ∈U Zq.

Decryption Each trustee i retrieves the ciphertext (G, H).
It then posts G x i as its partial decryption, along with
a proof that logG G x i = logg g x i .

Share combining The tallier retrieves G x i for all i. It com-
putes each coefficient λi of the Lagrange interpolat-
ing polynomial. It then computes GP(0) as

∏t
j=1 G x j .

Finally, it computes gm as H/GP(0), and uses an effi-
cient algorithm to recover m.

Figure 6.6: Threshold Elgamal Procedure

Proposition 6.6.3. In the random oracle model, assuming DDH, the threshold
Elgamal cryptosystem is IND-DCPA secure.

Proof. Let A be an IND-DCPA threshold Elgamal adversary. We wish to con-
struct B , an IND-CPA Elgamal adversary. Observe that B needs to simulate
the following data to be passed to A : the verification keys vi , for i = 1, . . . ,`;
the secret shares of the corrupted players, x i , for i = 1, . . . , t; and, for any ci-
phertext c encrypting a message m, B must simulate shares of the decryption
σi , and proofs of validity πi , for i = 1, . . . ,`.

Adversary B will operate as follows. First, A1 will choose a set of S of
t servers to corrupt. Without loss of generality, assume that these servers are
P1, . . . , Pt . Upon receiving the Elgamal public key (p, g, h), B1 and pass the
public key toA2.

Next, B1 must give A1 the secret shares of all corrupted players. In the

6.6 Threshold Homomorphic Cryptosystems 67

real world, the secret shares x i are evaluations of a random polynomial over
Zq. Thus, in the simulation,B1 will choose si ∈U Zq, fori = 1, . . . , t.

The simulator must now choose the verification shares, for all players. Ob-
serve that in a real world dealing of the shares, for any set S of size t+1, if i /∈ S,
then vi =

∏

j∈S vλi
j . Note that gP(0), in the real world, is a random element of

QRp. Thus, B1 will choose a dummy value of y ∈U QRp. So, for each of the
corrupted players, the verification keys of the corrupted servers are computed
as vi = g x i . The verification keys of the uncorrupted servers are computed as

vi = yλ0

∏

j∈S\{0}

g x jλ j .

Finally, we turn to the simulation of the decryption oracle. On input M
from A the simulator B will compute a ciphertext c = (G, H). Then, the
shares of the corrupted players are computed as ci = G x i , for i = 1, . . . , t. As
with the verification shares vi , the decryption shares of the uncorrupted players
t + 1, . . . ,` will be computed as

ci = Y λ0

∏

j∈S\{0}

G x jλ j ,

where Y ∈U QRp in place of GP(0). The proofs can be simulated using the
method of Proposition 5.5.2. Thus,A cannot detect the simulation.

Using the Fouque-Stern DKG, we can eliminate the dealer from the thresh-
old Elgamal scheme. This can be done by replacing the “dealing” phase of
threshold Elgamal with an execution of the Fouque-Stern DKG. At the end of
this phase, each player will have a share of the decryption key, which can be
used in the same manner as in the threshold Elgamal scheme. As the Fouque-
Stern DKG is intended for distributing discrete-log keys, it cannot be used for
other encryption schemes, as discussed below.

6.6.2 Threshold Paillier

Fouque, et al., give a threshold Paillier scheme [FPS01], shown in Figure 6.8.

Proposition 6.6.4. The threshold Paillier cryptosystem is correct.

Proof. Suppose S is a subset of t + 1 correct shares. First, we observe that
c4∆2mβ is easy to compute. To see this, notice that

∆ f (0) = ∆mβ

=
∑

j∈S

µS
0, j f (j)mod nm,

6.6 Threshold Homomorphic Cryptosystems 68

Parameters Set of trustees T with |T |= ` and∆= `!, RSA
composite n = pq with p = 2p′ + 1 and q = 2q′ + 1,
m= p′q′, g = (1+ n)a bn, (a, b) ∈U Z∗n×Z

∗
n.

Dealing The dealer generates a secret key βm, where β ∈U
Z∗n, and a public key (g, n,θ), where θ = L(gmβ) =
amβ . It then generates a random polynomial f (X) ∈
Z∗mn[X] such that f (X) = βm+ a1X+ a2X2+ · · · atX

t .
It sends si = f (i) to trustee i. Finally, it publishes
(g, n,θ) to the bulletin board.

Encryption To encrypt a message M , a party retrieves
(g, n,θ) from the bulletin board, and encrypts a ci-
phertext as gM xn, where x ∈U Z∗n.

Decryption Each trustee i retrieves the ciphertext c. It
then posts ci ← c2∆si as its partial decryption, along
with a proof that c4∆ and v∆ both raised to the power
si yield c2

i and vi , respectively.

Share combining The tallier retrieves ci for all i. It com-
putes each coefficient λi of the Lagrange interpolat-
ing polynomial. Finally, it recovers the message as

M = L
�
∏

j∈S

c
2∆λ j

j

�

.

Figure 6.7: Threshold Paillier procedure

and so

c4∆2mβ =
∏

j∈S

c4∆s jµ
s
0, j

=
∏

j∈S

c
2µS

0, j

j mod n2.

Now, let M be a message, and let c be the encryption of M . Then, we can

6.6 Threshold Homomorphic Cryptosystems 69

compute

c4∆2mβ = g4∆2Mmβ

= (1+ n)4∆
2Mamβ

= 1+ 4∆2Mamβn mod n2.

Thus,

L
�
∏

j∈S

c
2µS

0, j

j mod n2
�

= 4M∆2amβ

= 4M∆2θ mod n.

Dividing by 4∆2θ , we arrive at the message M .

Proposition 6.6.5. In the random oracle model, and assuming DCRA, the thresh-
old Paillier cryptosystem is IND-DCPA secure.

Proof. Let A be an IND-DCPA threshold Paillier adversary. We wish to con-
structB , an IND-CPA Paillier adversary. Observe thatB needs to simulate the
following data to be passed to A : the public key parameter θ ; the verifica-
tion keys vi , for i = 1, . . . ,`; the secret shares of the corrupted players, si , for
i = 1, . . . , t; and, for any ciphertext c encrypting a message m,B must simulate
shares of the decryption σi , and proofs of validity πi , for i = 1, . . . ,`.

Adversary B will operate as follows. First, A1 will choose a set of S of
t servers to corrupt. Without loss of generality, assume that these servers
are P1, . . . , Pt . Upon receiving the Paillier public key (n, g), B1 will randomly
choose a1, b1,θ ∈U Z∗n, set g1 = ga1 bn

1 , and pass the public key (g1, n,θ) toA2.
Observe that in the real world, θ is equal to amβ mod n, a random element in
Z∗n. In the simulation, θ is also chosen randomly from Z∗n.

Next, B1 must give A1 the secret shares of all corrupted players. In the
real world, the secret shares si are evaluations of a random polynomial over
Znm. However, m is not known to B , thus it cannot pick from Znm. So, in the
simulation,B1 will choose si ∈U {0, . . . , bn2/4c}, for i = 1, . . . , t.

The simulator must now choose the verification shares, for all players. Ob-
serve that in a real world dealing of the shares, two conditions hold. First, for

any set S of size t + 1, if i /∈ S, then v∆i =
∏

j∈S v
µS

i, j

j . Second, for any set S

of size t + 1, it holds that
∏

j∈S v
µS

0, j

j ≡ 1 (mod n). Again, m is unknown, so

B cannot compute a meaningful value of vmβ . However, note that vmβ , in the
real world, is a random element of QRn2 , which is also 1 mod n. Thus,B1 will

6.6 Threshold Homomorphic Cryptosystems 70

choose a dummy value of vmβ as 1+ 2αθn mod n2. So, for each of the cor-
rupted players, the verification keys of the corrupted servers are computed as
vi = v∆si , where v = g2α

1 . The verification keys of the uncorrupted servers are
computed as

vi = (1+ 2αθn)µ
S
i,0

∏

j∈S\{0}

vs jµ
S
i, j .

Finally, we turn to the simulation of the decryption oracle. On input M
from A the simulator B will compute a ciphertext c = gM

1 xn. Then, the
shares of the corrupted players are computed as ci = c2∆si , for i = 1, . . . , t. As
with the verification shares vi , the decryption shares of the uncorrupted players
t + 1, . . . ,` will be computing as

ci = (1+ 2Mθn)µ
S
i,0

∏

j∈S\{0}

cs jµ
S
i, j .

To simulate the proofs,B will set the value of the hash function H at

(v, c4∆, vi , c2
i , v y/ve

i , c4∆2 y/c2e
i)

to be e. Thus,A cannot detect the simulation.

Removing the trusted dealer from threshold Paillier is not a trivial problem.
The main issue is that if we are to jointly distribute the modulus n, we must
also jointly distribute its prime factors p and q. Furthermore, we must have
some assurance that the prime factors are safe primes.

6.6.3 Threshold Damgård-Jurik

Our last example is a threshold version of the Damgård-Jurik cryptosystem.
The protocol is shown in Figure 6.8.

Proposition 6.6.6. The threshold Damgård-Jurik cryptosystem is correct.

Proof. Suppose S is a subset of t + 1 correct shares. Observe that

d =
∏

i∈S

d
2λS

i
i

= G4∆2α

= h4∆2r mod n.

6.7 Conclusion 71

Then,

m= Ls(Hd−ns
)

= (1+ n)m mod ns+1,

and so the message is recovered.

Proposition 6.6.7. In the random oracle model, and assuming the DCRA and
CDDH, the threshold Damgård-Jurik is IND-DCPA secure.

We omit the proof of this proposition, as it is quite similar to the proof of
Proposition 6.6.5.

6.7 Conclusion

The powerful ideas of distributed trust introduced in this chapter will be es-
sential in constructing voting systems. In large-scale systems, where there are
many interacting parties, many of whom have opposing goals, it is necessary to
distribute trust in a way that no small group of users can have an unfair influ-
ence on the overall behavior of the system. We have shown how to distribute
encryption schemes, so that the secret key of the cryptosystem is not possessed
by any one party. Combining this with homomorphic encryption, it is now pos-
sible to conduct a procedure where individual ciphertexts remain hidden, while
the sum of the plaintexts can be computed and decrypted safely.

6.7 Conclusion 72

Parameters Set of trustees T with |T |= ` and∆= `!, RSA
composite n= pq with, g ∈ QRn, threshold t ≥ `/2.

Dealing The dealer generates a secret key α ∈ Zτ, and
a public key h = gα, where. It then generates a
random polynomial f (X) ∈ Zτ[X] such that f (X) =
α+ a1X+a2X2+ · · · atX

t . It sends si = f (i) to trustee
i. Finally, it publishes (g, n, h) to the bulletin board.
The verification value of player Pi is hi = gαi .

Encryption To encrypt a message m ∈ Z+, a party retrieves
(g, n, h) from the bulletin board, chooses s > 0 such
that m ∈ Zns , picks r ∈U ZN , and encrypts a cipher-
text as

Encs(m, r) =
�

g r , (h4∆2r)n
s
(n+ 1)m

�

.

Decryption Each trustee i retrieves the ciphertext (G, H).
It then posts di = G2∆αi as its partial decryption,
along with a proof that logg hi = logG4∆(d2

i).

Share combining The tallier retrieves di for all i. The tal-
lier will compute each coefficient of the Lagrange in-
terpolating polynomial as

λS
i =

∏

j∈S\{i}

∆
j

j− i
.

It then recovers the message as

m= Ls(Hd−ns
),

where d =
∏

i∈S d
2λS

i
i .

Figure 6.8: Threshold Damgård-Jurik procedure

Chapter 7

The Election Procedure

We now possess the tools necessary to design robust voting schemes. In this chapter,
we explore how the techniques described thus far can be used to achieve such an
end.

7.1 The Players

We can divide users of a voting system into four distinct rôles: voters, trustees,
auditors, and administrators. As expected, voters are the players who cast bal-
lots. Trustees are responsible for maintaining the integrity of the election. They
possess shares of the secret decryption key needed to recover the final election
result. In the literature, trustees are often called “authorities,” but we feel
that the term “trustees” more accurately reflects the nature of their position.
Trustees do not have more power than any other users. Administrators are
tasked with creating and maintaining current elections. Auditors can consist
of members of the previous three groups, as well as members of the public at
large. They are able to perform tasks guaranteed by the property of universal
verifiability, e.g., inspecting the election transcript, double-checking the final
tally, etc.

These groups may overlap arbitrarily. For instance, it may be desirable to
make the trustees a subset of the voters, so that the voters themselves can
ensure the integrity of the election. Furthermore, the administrators might
contain some members who are trustees, and some who are neutral parties.
Finally, the auditors would contain all of the above members, as well as addi-
tional neutral parties. Such a scenario is depicted in Figure 7.1.

73

7.2 Ballot Encoding 74

Voters

Trustees

Admins

Auditors

Figure 7.1: Possible separation of duties.

7.2 Ballot Encoding

We begin by discussing various ways of performing elections. Namely, we dis-
cuss how ballots can be cast, and how winners can be chosen.

There are several voting methods. We will concern ourselves with the most
well-known. In the plurality selection method, the winner is selected to be
the candidate with the most votes. It is important to observe that the winner
need not have the majority of votes, only the most. For example, suppose there
are three candidates: A, B, and C . Suppose candidate A receives 40% of the
votes and candidates B and C each receive 30%. Candidate A is selected as the
winner, because it received the most votes, even though it did not receive the
majority.

In order to use homomorphic encryption for ballot casting, it is necessary
to find some method of numerically encoding ballots. Depending on what sorts
of ballots are allowed, there are numerous ways of encoding them.

7.2.1 Yes/No Elections

In a yes/no election, voters are asked to select one of two options. For example,
there could be a proposal for which voters must accept or reject, or there could
be actually be two distinct candidates. For yes/no elections, we represent the
two candidates using the numbers 1 and 0. That is, the first candidate (say,
YES) is assigned the number 1, and the second candidate (say, NO), is assigned

7.2 Ballot Encoding 75

Voter Value Choice

V1 0 NO

V2 1 YES

V3 1 YES

V4 1 YES

the number 0. Each voter would then cast his ballot by encoding either the
number 0 or 1. The votes are then added, and the result gives the number of
YES votes. Subtracting the number of YES votes from the total yields the number
of NO votes.

Example 7.2.1. Suppose we have four voters:
When the votes are tabulated, the result is 0+1+1+1= 3, which gives us

the number of YES votes. This, subtracted from the total number of votes, gives
4− 3= 1, which is the number of NO votes. ◊

7.2.2 Multi-way Elections

Many elections, however, do not have only two candidates, e.g., US presidential
elections. These are called multi-way elections. In a multi-way election, there
are c candidates, and the voter is asked to choose one. Again, we must find
some way to encode a ballot as an integer. One elegant way of doing this is
to encode the ballots as base-M numbers, where M is some integer larger than
the total number of voters. Each power of M represents one candidate, and the
voters are asked to submit a number which is a power of M . That is, if there
are c candidates, the possible ballots would be M0, M1, . . . , M c−1. To vote for
candidate i, a voter would submit M i .

Example 7.2.2. Imagine a three-way election, and four voters. The candidates
are labeled A, B, and C .

Voter Value Choice

V1 010 B
V2 100 C
V3 001 A
V4 001 A

7.3 Ballot Casting 76

Tabulation is base-M addition, where M is greater than the number of vot-
ers. The result is 010+ 100+ 001+ 001 = 112M . Each position gives us the
number of votes for each candidate. That is, A received 2 votes, B received 1,
and C received 1. Thus, candidate A is the winner. ◊

7.2.3 Limited Vote

There is a generalization of the multi-way election called limited vote. In the
limited vote setting, a voter is able to choose t out of the c candidates, where
t ≤ c is fixed. One method of approaching this problem is by treating the
election as c concurrent yes/no elections. Each voter would then submit a Zc-
vector of yes/no ballots, where each coordinate corresponds to a candidate. In
position i of the vector, the voter would choose whether or not it wishes to vote
for candidate i, by selecting either 0 or 1, corresponding to YES or NO. Once all
ballots have been submitted, they are added component wise. The total in each
coordinate of the result indicates how many votes that candidate received.

Example 7.2.3. Again, we have a three-way election, and four voters. The
candidates are labeled A, B, and C , and voters are asked to choose two of the
three candidates.

Voter Value Choice

V1 (0, 1,1) B and C
V2 (1, 1,0) A and B
V3 (1, 0,1) A and C
V4 (0, 1,1) B and C

The ballots are added component-wise. The total is then

(0, 1,1) + (1,1, 0) + (1, 0,1) + (0,1, 1) = (2, 3,3).

Thus, there is a draw between candidates B and C . ◊

7.3 Ballot Casting

In a cryptographic voting system, it is crucial that the privacy of each voter
is maintained. Thus, ballots cannot be cast in the clear. That is, they must
be encrypted. The ballot encoding methods discussed in §7.2 lend themselves
naturally to being used with homomorphic encryption schemes.

7.3 Ballot Casting 77

Suppose we have a homomorphic cryptosystem (Gen, Enc,Dec). If a voter
wishes to cast a ballot, it will first encode its ballot using one of the previously
described methods. Suppose for simplicity that the election is using one of
the methods where ballots are encoded as integers. That is, the voter will
choose some encoding v of its vote. Then, it will compute Enc(v; r), with some
randomness r. Suppose now that there is another voter who has also cast a vote
v′, encrypted as Enc(v′; r ′). Once the two votes have been cast, they can be
combined as Enc(v; r)Enc(v′; r ′) = Enc(v+ v′; r + r ′), using the homomorphic
property of Enc. Anyone who possesses the decryption key can now decrypt
Enc(v + v′; r + r ′), revealing the total v + v′. We have thus achieved what we
set out to: addition of votes without knowledge of the plaintexts.

Example 7.3.1. To illustrate voting with homomorphic encryption, let us sup-
pose we are using the homomorphic Elgamal cryptosystem with a yes/no elec-
tion.

Voter Value Ciphertext Choice

V1 0 (g r1 , hr1) NO

V2 0 (g r2 , hr2) NO

V3 1 (g r3 , hr3 g) YES

V4 0 (g r4 , hr4) NO

V5 1 (g r5 , hr5 g) YES

Multiplying these ciphertexts pairwise, we get (g r1+···+r5 , hr1+···+r5 g2) =
Enc(2; r1+ · · · r5). Decrypting this ciphertext yields 2, the number of YES votes.
If we subtract from 5, we get 3, the number of NO votes. ◊

Similarly, we can show that any additive homomorphic cryptosystem can
be used in the same way to build a voting scheme. However, the fact that the
ballots are encrypted, and hence never individually revealed, leaves open the
possibility of voters’ tampering with the election.

Example 7.3.2. Consider a simple yes/no election to see a devastating voter
misbehavior:

V5 submits a bogus ballot, but this will never be known, as it is encrypted.
When tabulation occurs, there will be 5 “yes” votes, and 0 “no” votes! ◊

The above example shows that it is crucial that voters not be allowed to
submit arbitrary votes. Since the votes themselves are encrypted, it is not pos-
sible for the bulletin board to verify the validity of the votes merely by inspect-
ing them. Thus, it is necessary for the voter to prove that the vote is one of

7.3 Ballot Casting 78

Voter Value Choice

V1 0 NO

V2 0 NO

V3 1 YES

V4 0 NO

V5 4 ???

the allowed choices. Luckily, we have already introduced all of the machinery
necessary for this task. To form such “proofs of ballot validity,” we recall the
techniques of Chapter 5.

The specifics of how such proofs are constructed depends on the ballot
encoding method, as well as the cryptosystem being used. We outline below
the basic techniques that can be used for each encoding method.

• Yes/No Elections: The voter must prove that its vote is either YES or NO.
Since ballots are encoded as integers in {0,1}, the problem reduces to
that of proving that the ciphertext is the encryption of 0, and also prov-
ing that it is the encryption of 1, and then forming the OR-composition of
these two proofs. For example, with the Elgamal cryptosystem, the proto-
col in Figure 5.5 can be used for exactly this purpose. Similarly, for other
cryptosystems, protocols that prove that a ciphertext encrypts either 0 or
1 can be used.

• Multi-Way Elections: We can simply extend the technique for yes/no elec-
tions. Suppose there are c candidates, and M is an integer greater than
the number of voters. Then each vote will be one of M0, M1, . . . , M c−1.
Thus, the voter must prove that its vote is in the set {M0, M1, . . . , M c−1}.
Provided that c is small enough, it may not be inefficient to provide an
OR-composition of the predicates stating that the vote is each element of
this set individually. The composition can easily be obtained by Theorem
5.6.2.

• Limited Vote: Since the voter is submitting a vector of ballots, it must
submit a vector of proofs as well. It will submit one proof for each ballot,
arguing the fact that the ballot encrypts either 0 or 1 (as in the yes/no
election). Additionally, it must provide a proof that it has not voted for
more than the allowed number of candidates. To do this, it will compute
the sum of all the components of the vector, and then form a proof that
the sum encrypts the number t, where t is the allowed number of selected
candidates.

7.4 A Complete Procedure 79

We have given simple examples for constructing zero-knowledge proofs of
ballot validity. In [Gro05], Groth provides many efficient examples for proving
ballot validity with several different voting schemes.

7.4 A Complete Procedure

In this section, we give a complete overview of how an election can be con-
ducted. The scheme is constructed from the Fouque-Stern distributed key gen-
eration protocol described in §6.5.2. We suppose that the vote casting is done
with a threshold homomorphic cryptosystem (Gen, Enc,Dec), such as the ho-
momorphic Elgamal scheme given in §6.6. If a cryptosystem not based on the
discrete logarithm is used, the distributed key generation protocol may need
to change. Furthermore, we assume that the voting method is plurality with
limited vote.

1. Procedure creation. An election begins when an administrator logs onto
the bulletin board server and submits the procedure creation data. Among
the parameters specified are the procedure identifier, the identities of vot-
ers and authorities that are eligible to participate, the authority threshold
t, the minimum and maximum number of candidates that voters can se-
lect, the list of candidates, and the election duration. Once the adminis-
trator submits this form, the bulletin board server populates the database
with the corresponding information.

The bulletin board server subsequently generates the cryptographic val-
ues for the election.

In the following three steps the set of authorities that are enabled for the
procedure will jointly produce the public key of the system initializing
a threshold encryption scheme (cf. [Ped91]). We note that not all au-
thorities may successfully carry out the steps. In the steps below, we will
use the notation A1, A2, and A3 to denote the subsets of authorities that
succeed in completing the stages of the system public key generation. If
the authorities that complete all three stages are below a safety threshold
t ′, the system terminates the procedure. Note that the safety threshold
satisfies t ′ > t, where t is the distributing trust parameter.

2. Authority public key generation. Once the procedure has been created, the
authorities collaborate to create the public encryption key of the system.
At the end of the election, they each contribute a part to the decryption
of the result. Note that no authority has the ability to decrypt a single

7.4 A Complete Procedure 80

vote because the actual private key of the system does not exist in the
private memory of any one entity. Rather, it is broken up in the form
of the authorities’ individual private keys. In order to decrypt a single
vote, an amount of authorities greater than the authority threshold t
would all have to collaborate. To counter this, election officials should
designate authorities with differing political interests, so they would have
no incentive to collude.

An authority i downloads the cryptographic parameters from the bulletin
board. It then generates a Paillier public key (gi , ni), and stores the corre-
sponding secret key λ(ni). The public key is stored on the bulletin board.
Once all authorities have completed this stage, the public key of each
authority is stored on the bulletin board. Let A1 be the set of authorities
that have completed this step. If |A1|< t ′ (the safety threshold), then the
server will terminate the procedure here.

3. Polynomial generation. At this stage, the authorities will participate in
a protocol that will compute the public key for the election using a dis-
tributed key generation protocol.

An authority i logs in, reads (g j , n j) (the public keys) for all authorities
j ∈ A1, and the authority threshold t. The authority creates its polyno-
mial fi(X) = si0 + ai1X + · · · + ai tX

t . It publishes value Aik = gai k, for
each k = 0, . . . , t, as well as yi j = gsi j and Yi j = g

si j

j uni
i j , followed by a

proof (ei j, wi j , zi j), for each j ∈ A1. This serves as a form of encryption
of authority j’s index evaluated in authority i’s polynomial. Let A2 ⊆ A1
be the set of authorities that have completed this step. If |A2| < t ′, the
server terminates the procedure.

4. Verification. Trustee i verifies, for each j = 1, . . . ,`, the equality

t
∏

k=0

Ajk

ik = g fi(j).

Additionally, trustee i checks that g fi(j) = yi j , verifies each of the proofs
(ei j , wi j , zi j), and checks that yq

ik = 1. If any check does not pass, it
broadcasts a complaint against authority j. The set Q is formed from the
players who have participated correctly. All others are disqualified.

5. Private key generation. Each authority j ∈ A2 connects to the bulletin
board server and reads Yi j for all i ∈Q. Note that authority j can decrypt
all of these values, as they were encrypted with its public key. Thus, it

7.4 A Complete Procedure 81

retrieves its private key from its private memory. It decrypts these val-
ues, computes their sum, and stores the result in private memory. At this
point, authority j has the sum of the evaluations of its index in every
other authority’s polynomial. Let A3 ⊆ Q be the set of authorities that
have completed this step. If |A3| < t ′, the server terminates the proce-
dure.

6. Public key publication. The bulletin board server publishes the value y =
∏

i∈Q Ai0. Note that h is the sum of all of the authorities’ polynomials
evaluated at 0. This value y serves as the public key of the procedure,
which voters will use when they encrypt their ballots.

7. Voting. Now, the election may begin. Each voter i downloads the public
key y from the bulletin board, as well as the cryptographic parameters.
The voter is permitted to vote between Kmin and Kmax candidates, where
0 ≤ Kmin ≤ Kmax ≤ L, and L is the total number of candidates. The
voter thus forms a ciphertext for each candidate, encrypting 1 if the voter
votes for that candidate, and 0 otherwise. The encrypted vote is therefore
a vector of ciphertexts, one for each candidate. Along with the encrypted
vote, the voter computes a proof of ballot validity Π as in §7.3. Finally,
the pair (V,Π) is posted on the bulletin board.

The bulletin board server then verifies the proof. If the proof is valid, and
the voter has not already voted, it posts the vote and proof on the bulletin
board. Otherwise, it discards the vote and proof and returns an error.

8. Result tabulation. When duration of the election has expired, or when an
administrator manually ends the election, result tabulation occurs. The
bulletin board contains received a vote Vi from each voter i. The en-
crypted sum of the votes is computed by the bulletin board server com-
bining the votes as

V =
m
⊕

i=0

Vi ,

where ⊕ is the homomorphic operation on votes, and V is a vector of
ciphertexts encrypting the total number of votes for each candidate. This
combined sum is then posted on the bulletin board.

9. Authority decryption. Now, each authority logs in again, downloads the
encrypted result of the election, and submits its partial decryption. These
partial decryptions are posted on the bulletin board.

7.5 Arguments for Security and Correctness 82

10. Result decryption. Once each authority has submitted its partial decryp-
tion, the bulletin board server combines the partial decryptions and de-
crypts the result.

11. Result publication. The end result is finally published on the bulletin
board. The election is over, and no more logins are accepted. Anyone
can now view the final result.

7.5 Arguments for Security and Correctness

This section can be viewed as a point-by-point argument for why the above
scheme is correct and secure. The proofs are not rigorous in a mathematical
sense, but should be convincing from a high-level perspective.

7.5.1 Correctness

We provide arguments for why the scheme is correct. That is, assuming no
party deviates from the protocol, the election will be carried out correctly, and
the proper winner chosen.

Proposition 7.5.1. Assuming the protocol is followed correctly, the final tally is
equal to the sum of each voter’s vote.

Sketch of Proof. This follows from the homomorphic property of the encryp-
tion.

Proposition 7.5.2. The public key posted on the bulletin and used to encrypt votes
corresponds to a private key that can be reconstructed from a threshold number of
trustee shares.

Sketch of Proof. This follows from the correctness of the Feldman verifiable se-
cret sharing scheme.

7.5.2 Security

Next, we explain why the protocol is secure. That is, assuming that some parties
are malicious and intentionally tamper with the scheme, it should be resilient
up to some point. In the presence of a limited adversary, the election will be
carried out correctly, and the proper winner chosen.

Proposition 7.5.3. Under appropriate hardness assumptions, and assuming that
fewer than a threshold number of trustees collude, no voter’s ballot can be revealed.

7.5 Arguments for Security and Correctness 83

Sketch of Proof. Since a ballot is a ciphertext in an IND-DCPA secure cryptosys-
tem, it is computationally difficult to retrieve the plaintext without knowledge
of the private key. Furthermore, since the private key is shared using a secret-
sharing scheme, it is impossible to determine the secret without a threshold
number of shares, or by solving the computational problem that protects the
shared secret.

Proposition 7.5.4. No less than a threshold number of trustees can misbehave
and prevent the election from being carried out properly.

Sketch of Proof. By the security of the threshold homomorphic encryption, it is
impossible for any trustee to submit data that leads to a disruption of the key
generation, encryption, or decryption processes.

Proposition 7.5.5. Short of a denial-of-service attack, the bulletin board server
cannot misbehave and prevent the election from being carried out properly.

Sketch of Proof. We assume that all parties ensure that the bulletin board server
actually posts the correct data. Since the bulletin board holds no secrets, it is
not possible for the bulletin board server to fabricate any meaningful data of
its own accord, without being detected by at least one participant.

Proposition 7.5.6. No voter can misbehave and prevent the election from being
carried out properly.

Sketch of Proof. The only data submitted to the bulletin board by a voter is the
encrypted ballot and the proof of validity. Assuming that the bulletin board
server checks the proof of validity, the ballot will not be counted in the main
tally unless it has been proved to be benign.

Proposition 7.5.7. No third-party, without access to any secret information held
by voters or trustees, but with access to all information held on the bulletin board
server, can reveal an individual voter’s ballot.

Sketch of Proof. The secret information present in the scheme is the trustee
secret shares, the private election key, the randomness of each voter, and the
ballot of each voter. The third party does not have access to the private memory
of trustees or voters, so it cannot obtain the secret shares or the randomness.
The private election key cannot be obtained without a threshold number of
trustee shares. Finally, the ballot of each voter cannot be obtained without the
private election key.

7.6 Conclusion 84

7.6 Conclusion

We have now given a complete voting procedure. It uses all of the techniques
described thus far, including homomorphic encryption, proofs of knowledge,
distributed key generation, and a threshold cryptosystem.

Chapter 8

Other Approaches to Voting

This thesis has focused on the homomorphic encryption approach to secure elec-
tronic voting. There are, however, alternative approaches. These approaches rely
on different cryptographic primitives and, especially from an implementation point
of view, have different advantages and disadvantages.

8.1 Mixnets

Introduced by Chaum in 1981, the mixnet [Cha81] is a cryptographic primitive
well suited to elections. A mixnet is comprised of a collection of servers, called
mix servers, whose task is to shuffle a given input sequence of ciphertexts. This
serves as an implementation of a robust anonymous channel. The main dif-
ficulty in designing mixnet-based protocols is in requiring the mix servers to
provide proofs of correct operation. Mix servers must prove that they have per-
formed a correct shuffle, and that they have not dropped any votes. A good
survey of mixnets for electronic voting is provided by [Adi06].

8.2 Blind Signatures

Blind signature-based schemes use a method proposed by Fujioka, Okamoto,
and Ohta [FOO93]. In this scheme, voters form ballots, encrypt them, and send
them to an administrator. The administrator then creates a blind signature on
the ballot., i.e., a signature that does not require knowledge of the plaintext to
form. The administrator then sends the encrypted ballot along with the blind
signature back to the voter. Subsequently, voters submit their blindly signed
ballots through an anonymous channel to a voting bulletin board that will only
accept ballots signed by the administrator. Thus, the voter has demonstrated

85

8.3 Other Methods 86

that the ballot has actually been created by someone who is permitted to vote
(and, presumably, has only voted once), while the vote tallier has no knowledge
of which voter cast which ballot.

There are several implementations based on the blind signature approach,
all following the same basic scheme introduced by Fujioka, et al., known as
the “FOO” scheme. The protocol is as follows: There are two authorities, an
administrator and a collector. To vote, the voter fills out a ballot, commits to it,
signs it, and sends it to the administrator. Using a blind signature, the adminis-
trator signs it, and sends it back to the voter. The voter unblinds the ballot, and
sends the signed committed ballot anonymously to the counter. Once all voters
have submitted their ballots, the counter numbers them, and publishes the list.
Each voter is then responsible for finding its ballot in the list, and sending the
number along with a key needed to uncommit the vote to the counter through
an anonymous channel. The counter then uncommits the votes, publishes the
keys, and announces the result of the election. A disadvantage of this scheme
is that it requires an additional action on the part of the voter, as it must sent
the collector the decryption key.

The main disadvantage of the blind signature approach is that the voter
needs to be active in at least two phases to ensure verifiability. In practice,
realizing an anonymous channel is not straightforward. In current implemen-
tations of blind signature schemes that run on the Internet, for example, it is
easy to correlate voters with their votes.

8.3 Other Methods

While homomorphic encryption, mixnets, and blind signatures constitute the
three main voting-oriented primitives found in the cryptographic literature,
several other methods have been used in practice. The reader is referred to
[KKW06] for a brief summary of existing implementations of electronic voting
systems.

GNU.FREE [FRE] is a free voting system that is officially part of the GNU
project, and remains one of the very few free electronic voting systems in ex-
istence. It is not, however, based on any voting-oriented cryptographic primi-
tives. In GNU.FREE There are two servers, the electoral roll server (ERServer),
and the regional server (RTServer). All communications are encrypted using
BlowFish encryption with a key exchanged by RSA. The voter submits authen-
tication information to the ERServer, who validates it. The voter then fills out
a ballot, and sends a key along with a timestamp to the RTServer. The RT-
Server then stores this, and challenges the voter for the timestamp again. If the

8.3 Other Methods 87

voter provides the valid timestamp, then the key is decrypted and sent to the
ERServer. The ERServer records that the voter has submitted a key and cannot
vote again. The RTServer then decrypts the vote, stores it, and deletes the key.
The fault in this scheme is that malicious servers can record which user voted
for which candidate as the votes are submitted. It is worth mentioning that the
author of GNU.FREE, has publicly discontinued his work on the project, due to
disillusionment with the concept of secure Internet voting.

Another implementation, SureVote [Cha04], is based on “visual crypto.”
The voting machine produces an encryption of the voter’s ballot, which is pub-
lished on a bulletin board. The voter receives a receipt which contains a unique
serial number. The serial number can later be used to compare with the results
posted on the bulletin board. At the poll-site, two overlayed transparent sheets
are printed. When overlayed, the voter can see the ballot which corresponds to
his choices. The voter then chooses a layer to keep, and a layer to be discarded
in a publicly viewable shredder. The voter also keeps the serial number of his
ballot. The ciphertext is then mixed for anonymity and finally decrypted and
counted. Thus, the election provides an element of voter-verifiability.

Chapter 9

Implementation of the Adder
Voting System

This chapter describes the implementation of the Adder Internet-based voting sys-
tem.

9.1 Introduction

In an attempt to investigate the theoretical ideas discussed thus far in a practi-
cal setting, we have implemented the Adder system, an Internet-based realiza-
tion of a homomorphic cryptographic voting scheme. The design of the system
has been presented in [KKW06], and the reader is encouraged to seek out this
paper for more information. Additionally, the system is available on the World
Wide Web as free software at

http://cryptodrm.engr.uconn.edu/adder/

One of Adder’s primary advantages over existing systems is that it is free
software. That is, the source code of the system is available for the public
to download, run, experiment with, modify, etc., as they see fit. Given the
inherent difficulties in software development, the transparency and openness
of the system allows users to be confident that the developers are not hiding
any secrets. Especially in the case of cryptographic software, correct behavior
of the program is not the only necessary feature; it must be secure as well.
Public access to the source is important to ensure that security flaws will not
remain buried.

Furthermore, we hope that the freedom of Adder will allow independent
experimentation and usage. From an academic perspective, we would like to

88

9.2 System Architecture 89

see Adder tested in many different environments, so that its limitations and
weaknesses can be exposed and corrected. We also hope that Adder will be of
use to many organizations throughout the world that need to make decisions
in a private, verifiable manner.

As of this writing, Adder is the only free electronic voting system based on
strong cryptography.

9.2 System Architecture

The Adder system is organized into several components: a cryptographic li-
brary, a main server, a Web browser applet, and a graphical client.

The cryptographic library implements much of the cryptographic function-
ality discussed in this thesis. It is based on the homomorphic threshold Elgamal
cryptosystem of §4.2, and implements a simplified version of the Fouque-Stern
distributed key generation protocol of §6.5.2. It also implements a generic
framework for forming disjunctions of non-interactive proofs of knowledge (cf.
§5.6), and builds the proofs of knowledge for Elgamal encryption (cf. §5.9.1)
on top of this framework. The integer computations are performed using the
GNU MP multiple precision arithmetic library, and abstracted in a custom inte-
ger class. The cryptographic routines are constructed in terms of this integer
class.

The main server is an implementation of the idealized concept of the bul-
letin board, discussed in §6.3. It is implemented as a multi-threaded server
written in C++. The server stores all persistent data in a MySQL database in-
cluding data needed for user authentication. When a user (either a voter or an
authority) connects to the server, the user presents to the server a username
and password, which is matched against a record in the database. If the user
is authenticated successfully, then the server allows the user to carry out the
intended action. The server thus maintains the behavioral requirements of the
bulletin board; that is, that users are not permitted to delete information, that
each user has append access to a designated area of the bulletin board, and
that all areas are world-readable. The user communicates with the bulletin
board through a special protocol, and the internal structure of the server and
the implementation of the data storage itself are invisible to the user. Thus, the
bulletin board server presents a complete abstraction of the idealized bulletin
board.

The Web applet is written in Java, and allows voting over the Web. As a
cryptographic voting system such as this requires heavy computation on the
voter’s computer, an applet of some sort is necessary if voting is to be done

9.3 Outline of an Adder Procedure 90

over the Web. The applet implements a large portion of the cryptographic
functionality of the C++ cryptographic library, including encryption and the
forming of proofs of knowledge.

Finally, the graphical client is written in C++ and makes use of the C++
cryptographic library. It provides a consistent graphical user interface written
with Qt, and is used for administering elections, as well as performing authority
functions. In addition to this, it allows read-only access to an Adder server, and
can provide auditing features, so that interesting third parties can ensure the
integrity of election procedures.

9.3 Outline of an Adder Procedure

An Adder procedure advances in much the same way as described in §7.4. An
election procedure is initiated through an interface which allows the adminis-
trator to provide the candidate list and specify the eligible users. Such users are
voters and authorities. An Adder election procedure progresses in the following
manner. The authorities log into the system and participate in a protocol that
results in the creation of a public encryption key for the system, and a unique
private decryption key for each authority.

Next, each voter logs on, downloads the public key of the system, and
uses that to encrypt the ballot, which is placed in an area of public storage
specifically reserved for that voter. When the election is over, the server tallies
the votes (using special encryption properties) and posts the encrypted result.
Subsequently, the authorities provide some decoding information based on the
encrypted result and their private keys. When enough such decoding informa-
tion has been collected, the server combines the individual pieces to form the
election result, which is then published. We note that Adder does not employ
any user-to-user communication; instead, users of the system (in particular,
the authorities) communicate indirectly through the public bulletin board that
is maintained by the system. Voters are only active in one round throughout
the system’s operation (unless they are also playing the role of the authorities,
which is possible). A graphical depiction is shown in Figure 9.1.

9.4 Limitations of Adder

As an Internet-based voting system, Adder is susceptible to a number of vulner-
abilities and attacks. We list them below, along with possible solutions which
will be implemented in future versions of the Adder system.

9.4 Limitations of Adder 91

:proceduredata:Authority

postpublickeygetprivatekey

:publickey
:encryptedauthIDs:encryptedvalues

:total

:createpolynomial

:publickey

:allpublickeys
:combinevalues

:vote+proof
:partialdecryption

:Administrator :Voter :BulletinBoard

:computeandpostresult
:combineallvotes

:combineencryptions
:verifyproof

:generatecryptovalues

Figure 9.1: The stages of an Adder election procedure

9.5 Conclusion 92

1. Currently, the distributed key generation subsystem of Adder does not
employ the verification methodology discussed previously. Thus, it is
possible for authorities to cheat in this protocol, biasing the distribution
of the public key, or disrupting the protocol entirely.

2. The MySQL database that Adder relies on may not provide an adequate
level of protection against insider attacks.

3. Vote buying and coercion is a problem that remains difficult to solve with
remote-based voting systems. It is possible that re-randomizing the ci-
phertext [BFP+01] before the ballot is cast could protect against voters’
proving to others the accuracy of their ciphertexts.

4. As Adder does not use a voter-verifiable audit trail, it is hard for voters to
be confident that there votes have been cast correctly. The danger with
an audit trail is that it may make it easy for voters to prove how they
voted.

5. The fact that Adder runs on standard PCs that have not been certified
by election officials makes it possible that an Adder procedure could be
disrupted by a virus. A possible work-around is to use a boot CD-ROM
that contains a certified read-only operating system image.

In the future, we aim to implement more cryptographic tools to improve the
security and functionality of Adder. These tools include the verification aspects
of the Fouque-Stern distributed key generation, as well as support for a wider
variety of election schemes.

9.5 Conclusion

We hope that Adder is a significant contribution in the area of publicly usable
voting systems.

Chapter 10

Conclusion

We conclude this thesis by summarizing what we have discussed so far, and propos-
ing several directions for future research in cryptographic e-voting.

10.1 Further Directions

This thesis has only touched upon a few aspects of electronic voting. The ideas
we have covered here can be extended and investigated in many further ways.

10.1.1 Formalization of Security

The arguments for security given in this thesis are done in a rather ad hoc
manner. Although the specific encryption schemes and zero-knowledge proofs
used have formal security proofs, it has not been shown that the composition
of all of these primitives yields a secure voting protocol. Future work in this
area would involve formalizing the exact security definitions required by a ho-
momorphic voting protocol, and proving the security of our protocol based on
this definition. One promising approach to consider is the universal compos-
ability framework of Canetti [Can01]. Groth has initiated the investigation of
analyzing voting schemes in this framework [Gro04].

10.1.2 Non-voting Applications

Although the protocols and primitives are described here in the context of vot-
ing, there may be other applications for this theory, e.g., general forms of dis-
tributed decision making where auditability is important. Another application
is contract-based computing. This is an application to the World Wide Web,

93

10.1 Further Directions 94

where users are asked to provide certain personal information (say, for demo-
graphic analysis), and they are presented with a privacy contract guaranteeing
that their data is only used for aggregation.

10.1.3 Implementations

So far, there are very few implementations of cryptographically robust elec-
tronic voting systems. Of those, even fewer are available for public use and
scrutiny. The Adder system is one such system which uses the homomorphic
approach, and to this date, it remains the only publicly available system that
does. More implementations of this theory would be a welcome contribution.

10.1.4 Experimental Data

In this thesis, we have focused exclusively on theory. It would also be useful
to gather experimental data. Aspects that could be tested include scalability,
resistance to denial-of-service and other network attacks, practical efficiency,
and usability.

10.1.5 More Sophisticated Voting Methods

The voting scheme we have discussed uses the plurality election method. That
is, the candidate with the most votes wins. Recall the earlier example where
there are three candidates: A, B, and C . Candidate A received 40% of the votes
and candidates B and C each receiveed 30%. Candidate A is selected as the
winner, because it received the most votes, even though it did not receive the
majority.

After reading the previous example, one might say there is a flaw in the
plurality method, as the majority of voters actually voted against candidate A.
To address this concern, we can use the Borda method of selecting a winner.
In the Borda method, each voter submits as its ballot an ordered list of candi-
dates. Various results have been proved about different voting schemes, and
some are more suitable to certain types of elections than others. Expanding
the cryptographic tools to work with varied elections schemes is a necessary
task. Groth [Gro05] has provided examples of non-interactive zero-knowledge
proofs based on various voting schemes.

It is also possible that different election outcomes may be desired. For ex-
ample, in the current scheme, the outcome consists of the number of votes each
candidate received. However, it may be desirable to only reveal the winner, or
only the ranking of the candidates, rather that the exact number of votes.

10.2 Discussion 95

10.2 Discussion

In this thesis, we have explored the idea of using homomorphic encryption to
perform elections. We have hopefully presented a convincing argument that
this approach solves many of the security problems that plague existing elec-
tronic voting techniques. With homomorphic encryption, voters are ensured
that their individual ballots need not be decrypted, and yet can still be added
together. The techniques of zero-knowledge proofs have been described, which
prevent voters from “cheating.” Finally the idea of distributed trust and thresh-
old encryption provide a way for the trust in an election system to be distributed
to a large set of trustees, so that no one player holds all of the information nec-
essary to compromise the privacy of any individual voter.

The aforementioned goals of transparency, universal verifiability, privacy,
and distributed trust have been achieved. The bulletin board model allows all
communication to be performed in the open, so that any interested third party
can perform an audit of the entire scheme.

We have introduced the Adder system, a free implementation of a homo-
morphic voting scheme. It is hoped that Adder will provide an opportunity for
further experimentation with cryptographic voting.

Despite the successes achieved thus far, several challenges remain. Many
of these challenges are of a non-technical nature—vote buying, voter coercion,
inherent insecurities in computer networks—and are perhaps insurmountable
with current technology. By exploring the limits of what cryptography can
provide, and by pursuing a dialogue with those who actually conduct and par-
ticipate in elections, we will hopefully reach an understanding of what aspects
of technology are useful, and what remains to be explored.

Bibliography

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis,
Massachusetts Institute of Technology, 2006.

[Ben87] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, 1987.

[BFP+01] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques
Stern, and Guillaume Poupard. Practical multi-candidate election
system. In Principles of Distributed Computing, pages 274–283,
2001.

[BG02] Dan Boneh and Philippe Golle. Almost entirely correct mixing with
applications to voting. In Vijay Atlury, editor, Proceedings of the 9th
ACM Conference on Computer and Communication Security (CCS-
02), pages 68–77, New York, November 18–22 2002. ACM Press.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against proto-
cols based on RSA encryption standard PKCS #1. In Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 1–12. Springer Verlag, 1998.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145, 2001.

[CDFT98] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. RFC 2440:
OpenPGP message format. Technical report, Network Working
Group, November 1998.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs
of partial knowledge and simplified design of witness hiding pro-
tocols. In Yvo G. Desmedt, editor, Advances in Cryptology—
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 174–187. Springer-Verlag, 21–25 August 1994.

96

BIBLIOGRAPHY 97

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A se-
cure and optimally efficient multi-authority election scheme. In EU-
ROCRYPT ’97. Springer Verlag, 1997. Lecture Notes in Computer
Science No. 1233.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–88,
February 1981.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elec-
tions. IEEE Security & Privacy, 2(1):38–47, 2004.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with ob-
servers. In CRYPTO ’92: Proceedings of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 89–
105, London, UK, 1993. Springer-Verlag.

[DGS03] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The theory
and implementation of an electronic voting system. In D. Gritza-
lis, editor, Secure Electronic Voting, chapter 6, pages 77–99. Kluwer
Academic Publishers, 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6):644–654,
1976.

[DHR+98] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. RFC
2311: S/MIME version 2 message specification. Technical report,
Network Working Group, March 1998.

[DJ00] Ivan Damgård and Mads Jurik. A generalisation, a simplification
and some applications of Paillier’s probabilistic public-key system.
In Public Key Cryptography: 4th International Workshop on Practice
and Theory in Public Key Cryptosystems, volume 1992 of Lecture
Notes in Computer Science, page 119. Springer Berlin/Heidelberg,
2000.

[DJ03] Ivan Damgård and Mads Jurik. A length-flexible threshold cryp-
tosystem with applications. In ACISP, pages 350–364, 2003.

[Elg85] Taher Elgamal. A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information The-
ory, IT-31(4):469–472, 1985.

BIBLIOGRAPHY 98

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable se-
cret sharing. In IEEE Symposium on Foundations of Computer Sci-
ence, pages 427–437. IEEE, 1987.

[FOO93] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting
scheme for large scale elections. In Proceedings of AUSCRYPT ’92,
pages 244–251, 1993.

[FPS01] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Shar-
ing decryption in the context of voting or lotteries. In FC ’00: Pro-
ceedings of the 4th International Conference on Financial Cryptogra-
phy, pages 90–104, London, UK, 2001. Springer-Verlag.

[FRE] GNU.FREE: Heavy-Duty Internet Voting.
http://www.j-dom.org/users/re.html.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solu-
tions to identification and signature problems. In Proc. CRYPTO’86,
LNCS-263, pages 186–194. Springer Verlag, 1986.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hid-
ing protocols. In STOC ’90: Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 416–426, New York,
NY, USA, 1990. ACM Press.

[FS01a] Pierre-Alain Fouque and Jacques Stern. One round threshold
discrete-log key generation without private channels. In PKC ’01:
Proceedings of the 4th International Workshop on Practice and The-
ory in Public Key Cryptography, pages 300–316, London, UK, 2001.
Springer-Verlag.

[FS01b] Jun Furukawa and Kazue Sako. An efficient scheme for prov-
ing a shuffle. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO ’ 2001, volume 2139 of Lecture Notes in Computer Science,
pages 368–387. International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany, 2001.

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Ra-
bin. Secure distributed key generation for discrete-log based cryp-
tosystems. Lecture Notes in Computer Science, 1592:295+, 1999.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Jour-
nal of Computer and Systems Sciences, 28(2):270–299, April 1984.

BIBLIOGRAPHY 99

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complex-
ity of interactive proof-systems. In STOC ’85: Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages
291–304, New York, NY, USA, 1985. ACM Press.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, 2001.

[Gro04] Jens Groth. Evaluating security of voting schemes in the universal
composability framework. In Applied Cryptography and Network
Security, volume 3089 of Lecture Notes in Computer Science, pages
46–60. Springer Berlin/Heidelberg, 2004.

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting.
In Applied Cryptography and Network Security, volume 3531/2005
of Lecture Notes in Computer Science, pages 467–482. Springer
Berlin/Heidelberg, 2005.

[GZB+02] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and
Ari Juels. Optimistic mixing for exit-polls. In ASIACRYPT: Advances
in Cryptology – ASIACRYPT: International Conference on the Theory
and Application of Cryptology, volume 2501, pages 451–465, 2002.

[Hur05] Harri Hursti. Critical security issues with Diebold Optical Scan
design. Technical report, Black Box Voting Project, July 2005.
http://www.blackboxvoting.org/BBVreport.pdf.

[jK02] Kwang jo Kim. Killer application of PKI to Internet voting. In IWAP
2002. Springer Verlag, 2002. Lecture Notes in Computer Science
No. 1233.

[JRSW04] D. Jefferson, A. Rubin, B. Simmons, and David Wagner. A security
analysis of the secure electronic registration and voting experiment
(SERVE). http://servesecurityreport.org/, 2004.

[Jur03] Mads J. Jurik. Extensions to the Paillier Cryptosystem with Applica-
tions to Cryptographic Protocols. PhD thesis, University of Aarhus,
2003.

[KKW06] Aggelos Kiayias, Michael Korman, and David Walluck. An Internet
voting system supporting user privacy. In ACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference, pages
165–174, Washington, DC, USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 100

[KMR+06] A. Kiayias, L. Michel, A. Russell, A. A. Shvartsman, M. Ko-
rman, A. See, N. Shashidhar, and D. Walluck. Security as-
sessment of the Diebold Optical Scan voting terminal. Tech-
nical report, University of Connecticut VoTeR Center, Octo-
ber 2006. http://voter.engr.uconn.edu/voter/Reports_files/uconn-
report-os.pdf.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel Rubin, and Dan Wal-
lach. Analysis of an electronic voting system. In IEEE Symposium
on Security and Privacy, May 2004.

[KSW] Chris Karlof, Naveen Sastry, and David Wag-
ner. The promise of cryptographic voting protocols.
http://www.cs.berkeley.edu/∼daw/papers/cvop-unpub05.pdf.

[Mao04] Wenbo Mao. Modern Cryptography: Theory and Practice. Prentice
Hall PTR, 2004.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-
voting. In Pierangela Samarati, editor, Proceedings of the 8th ACM
Conference on Computer and Communications Security, pages 116–
125, Philadelphia, PA, USA, November 2001. ACM Press.

[Nef03] C. Andrew Neff. Verifiable mixing (shuffling) of Elga-
mal pairs. http://www.votehere.net/vhti/documentation/egshuf-
2.0.3638.pdf, December 2003.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In J. Stern, editor, Advances in Cryptology –
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238. Springer-Verlag, 1999.

[Ped91] Torben Pryds Pedersen. A threshold cryptosystem without a trusted
party (extended abstract). In D. W. Davies, editor, Advances in
Cryptology—EUROCRYPT 91, volume 547 of Lecture Notes in Com-
puter Science, pages 522–526. Springer-Verlag, 8–11 April 1991.

[PS00] Guillaume Poupard and Jacques Stern. Fair encryption of RSA
keys. In Advances in Cryptology – EUROCRYPT 2000: International
Conference on the Theory and Application of Cryptographic Tech-
niques, volume 1807 of Lecture Notes in Computer Science, page
172. Springer Berlin/Heidelberg, 2000.

BIBLIOGRAPHY 101

[QGAB89] Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom
Berson. How to explain zero-knowledge protocols to your children.
In CRYPTO ’89: Proceedings on Advances in cryptology, pages 628–
631, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[Riv01] Ronald L. Rivest. Electronic voting. In Financial Cryptography ’01,
volume 2339 of LNCS, pages 243–268. Springer-Verlag, 2001.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. In
CRYPTO ’91: Proceedings of the 11th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 433–444, London,
UK, 1992. Springer-Verlag.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In CRYPTO ’89: Proceedings of the 9th Annual In-
ternational Cryptology Conference on Advances in Cryptology, pages
239–252, London, UK, 1990. Springer-Verlag.

[Sch00] Bruce Schneier. Crypto-gram newsletter. Technical re-
port, Counterpane Internet Security, Inc., December 2000.
http://www.schneier.com/crypto-gram-0012.html.

[Sha69] Daniel Shanks. Class number, a theory of factorization, and genera.
In Proceedings of Symposia in Pure Mathematics, volume 20, pages
415–440, 1969.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press, 2005.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. MIT
Press, 1997.

[Sys03] Diebold Election Systems. Checks and balances in elections equip-
ment and procedures prevent alleged fraud scenarios. July 2003.

[Vor] Poorvi Vora. Citizen verified voting: An implementation of Chaum’s
voter verifiable scheme. Talk given at the DIMACS Workshop on
Electronic Voting, Rutgers U., NJ, May 26-27, 2004.

Index

σ-field, 9

abelian, 11
active adversary, 59
Adder, 88, 94
administrator, 73
area (bulletin board), 58
asymptotic notation, 7
auditor, 73

bijection, 6
binary operation, 10
blind signature, 85
Borda, 94
bulletin board, 57
butterfly ballots, 2

C++, 89
CA, see certification authority
Carmichael function, 16
CDH, see computational Diffie-Hellman

problem
certificate, 56
certification authority, 56
Chaum-Pedersen proof of equality, 46
cheating player, 42
Chinese Remainder Theorem, 16
Chinese Remainder Theorem, 15
ciphertext re-randomization, 92
ciphertext space, 27, 64
collision resistance, 48
combining algorithm, 65
completeness, 42, 44

composite residuosity problem, 23
composite-DDH assumption, 23
computational Diffie-Hellman problem,

21
contract-based computing, 93
coset, 11, 15
cryptographic hash function, 48
cyclic group, 11

Damgård-Jurik proofs, 52
Damgård-Jurik cryptosystem, 37
DCRA, see decisional composite resid-

uosity assumption
DDH, see decisional Diffie-Hellman prob-

lem
decisional composite residuosity assump-

tion, 24
decisional Diffie-Hellman assumption,

22
decisional Diffie-Hellman problem, 21
decryption algorithm, 27
description (of a group), 22
Diebold, 3
Diffie-Hellman key exchange, 20
direct product, 11
direct recording electronic, 2
discrete logarithm problem, 19
distributed key generation, 60
distributed trust, 4, 55
DLOG, see discrete logarithm problem
DRE, see direct recording electronic

Elgamal cryptosystem, 34

102

INDEX 103

Elgamal proofs, 50
encryption algorithm, 27, 65
encryption scheme, 26
ensemble, 19
Euler totient function, 15
event, 9

Feldman’s VSS, 60
Fiat-Shamir heuristic, 48
field, 13
Florida, 2
FOO scheme, 86
Fouque-Stern DKG, 63

generator, 11
GNU MP, 89
GNU.FREE, 86
greatest common divisor, 6
group, 10
group generator, 22

hash function, see cryptographic hash
function

homomorphic cryptosystem, 32
homomorphism, 10
honest player, 42
honest-verifier zero-knowledge, 44

ideal, 14
IND-CCA2, see indistinguishability un-

der adaptive chosen ciphertext
attack

IND-CPA, see indistinguishability under
chosen plaintext attack

IND-CPA game, 28
IND-CPA-secure, 28
IND-DCPA, see indistinguishability un-

der distributed chosen plain-
text attack

indistinguishability, 19

indistinguishability under adaptive cho-
sen ciphertext attack, 29

indistinguishability under chosen plain-
text attack, 28

indistinguishability under distributed cho-
sen plaintext attack, 65

injection, 6
interactive proof system, 42
isomorphism, 10

Jacobi symbol, 16
Java, 89

key generation algorithm, 27, 65
key space, 27, 64

Lagrange interpolation, 14
least common multiple, 6
Legendre symbol, 16
length, 7
lever-based machine, 2
limited vote, 76, 78

MD5, 48
message space, 26, 64
mix server, 85
mixnet, 85
multi-way election, 75, 78
MySQL, 89

negl, 19
negligible, 18
NP, 8
NP-complete, 8
NP-hard, 8

OpenPGP, 55
oracle, 7
order (of a group element), 12
order (of a group), 12

P, 8

INDEX 104

Paillier cryptosystem, 36
Paillier proofs, 50
paper ballot, 2
Pedersen’s PKG, 62
PKCS #1, 30
plurality, 74, 94
polynomial-time equivalent, 8
polynomial-time reducible, 8
PPT, see probabilistic polynomial time

Turing machine
prime number, 6
privacy, 4
probabilistic polynomial time Turing ma-

chine, 7
probabilistic Turing machine, 7
probability, 9
probability space, 9
probability measure, 9
Proof of disjunction, 47
proof of knowledge, 44
prover, 42
public-key cryptosystem, 26

Qt, 90
quadratic residue, 16
quotient group, 11
quotient ring, 15

random oracle, 49
random oracle model, 49
randomness space, 27, 64
real or random chosen plaintext attack,

28
relatively prime, 6
relatively prime (ideals), 15
residuosity class, 26
ring, 13
ring of polynomials, 13
ROR-CPA-secure, 28
RSA composite, 23

S/MIME, 55
safe prime, 20
sample space, 9
Schneier, Bruce, 3
Schnorr proof of knowledge, 45
secret-sharing schemes, 56
security parameter, 22
SERVE, 3
SHA-1, 48
Shamir’s scheme, 56
share decryption algorithm, 65
soundness, 42
space space, 64
special soundness, 44
SSL, 30
static adversary, 58
subgroup, 10
SureVote, 87
surjection, 6

three-move protocol, 43
threshold, 55
threshold Damgård-Jurik, 71
threshold cryptosystem, 64
threshold Elgamal, 65
threshold Paillier, 68
threshold scheme, 56
transcript (bulletin board), 58
transparency, 4
trustee, 4, 73

uniform distribution, 9
universal composability framework, 93
universal verifiability, 4

verifiable secret sharing, 58
verifier, 42
visual crypto, 87
vote buying, 92
voter, 73
voter coercion, 92

INDEX 105

voter-verifiable audit trail, 92
VSS, see verifiable secret sharing

web of trust, 55

yes/no election, 74, 78

zero-knowledge, 42

Colophon

This document was prepared using LATEX 2ε . The text was set in 11pt Charter,
designed by Matthew Carter in 1987. The mathematics was set in the Math De-
sign typeface designed to accompany Charter. The illustrations were produced
with Xfig.

106

	Introduction
	Motivation
	Classical Technology
	Failures of Electronic Voting
	The Need for Strong Cryptography
	Outline
	Prerequisites

	Mathematical Preliminaries
	Basic Definitions
	Computational Complexity
	Probability
	Algebra
	Number Theory
	Complexities of Arithmetic Operations

	Cryptographic Preliminaries
	Adversarial Advantage
	The Discrete Logarithm
	Algebraic Setting
	The Diffie-Hellman Problems

	The Composite Residuosity Problem
	Encryption
	Formal Definition
	Security Definitions

	Conclusion

	Homomorphic Encryption Schemes
	Introduction
	The Elgamal Cryptosystem
	The Paillier Cryptosystem
	The Damgård-Jurik Cryptosystem
	Conclusion

	Proofs of Knowledge
	Motivation
	Required Properties
	Interactive Proof Systems
	Formal Definition
	Basic Protocols
	Knowledge of Discrete Logs
	Equality of Discrete Logs

	Composition of Proofs
	Non-interactive Proofs
	The Random Oracle Model
	Proofs About Encryptions
	Elgamal Proofs
	Paillier Proofs
	Damgård-Jurik Proofs

	Conclusion

	Distribution of Trust
	Motivation
	Shamir's Scheme
	The Communication Model
	Verifiable Secret Sharing
	The Model
	Feldman's VSS

	Distributed Key Generation
	Pedersen's DKG Protocol
	Public DKG

	Threshold Homomorphic Cryptosystems
	Threshold Elgamal
	Threshold Paillier
	Threshold Damgård-Jurik

	Conclusion

	The Election Procedure
	The Players
	Ballot Encoding
	Yes/No Elections
	Multi-way Elections
	Limited Vote

	Ballot Casting
	A Complete Procedure
	Arguments for Security and Correctness
	Correctness
	Security

	Conclusion

	Other Approaches to Voting
	Mixnets
	Blind Signatures
	Other Methods

	Implementation of the Adder Voting System
	Introduction
	System Architecture
	Outline of an Adder Procedure
	Limitations of Adder
	Conclusion

	Conclusion
	Further Directions
	Formalization of Security
	Non-voting Applications
	Implementations
	Experimental Data
	More Sophisticated Voting Methods

	Discussion

	Bibliography
	Index

